![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnd2lem | Structured version Visualization version GIF version |
Description: Lemma for equivbnd2 33721 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.) |
Ref | Expression |
---|---|
bnd2lem.1 | ⊢ 𝐷 = (𝑀 ↾ (𝑌 × 𝑌)) |
Ref | Expression |
---|---|
bnd2lem | ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnd2lem.1 | . . . . . 6 ⊢ 𝐷 = (𝑀 ↾ (𝑌 × 𝑌)) | |
2 | resss 5457 | . . . . . 6 ⊢ (𝑀 ↾ (𝑌 × 𝑌)) ⊆ 𝑀 | |
3 | 1, 2 | eqsstri 3668 | . . . . 5 ⊢ 𝐷 ⊆ 𝑀 |
4 | dmss 5355 | . . . . 5 ⊢ (𝐷 ⊆ 𝑀 → dom 𝐷 ⊆ dom 𝑀) | |
5 | 3, 4 | mp1i 13 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 ⊆ dom 𝑀) |
6 | bndmet 33710 | . . . . . 6 ⊢ (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (Met‘𝑌)) | |
7 | metf 22182 | . . . . . 6 ⊢ (𝐷 ∈ (Met‘𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ) | |
8 | fdm 6089 | . . . . . 6 ⊢ (𝐷:(𝑌 × 𝑌)⟶ℝ → dom 𝐷 = (𝑌 × 𝑌)) | |
9 | 6, 7, 8 | 3syl 18 | . . . . 5 ⊢ (𝐷 ∈ (Bnd‘𝑌) → dom 𝐷 = (𝑌 × 𝑌)) |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 = (𝑌 × 𝑌)) |
11 | metf 22182 | . . . . . 6 ⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ) | |
12 | fdm 6089 | . . . . . 6 ⊢ (𝑀:(𝑋 × 𝑋)⟶ℝ → dom 𝑀 = (𝑋 × 𝑋)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ (Met‘𝑋) → dom 𝑀 = (𝑋 × 𝑋)) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝑀 = (𝑋 × 𝑋)) |
15 | 5, 10, 14 | 3sstr3d 3680 | . . 3 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋)) |
16 | dmss 5355 | . . 3 ⊢ ((𝑌 × 𝑌) ⊆ (𝑋 × 𝑋) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋)) | |
17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋)) |
18 | dmxpid 5377 | . 2 ⊢ dom (𝑌 × 𝑌) = 𝑌 | |
19 | dmxpid 5377 | . 2 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
20 | 17, 18, 19 | 3sstr3g 3678 | 1 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 × cxp 5141 dom cdm 5143 ↾ cres 5145 ⟶wf 5922 ‘cfv 5926 ℝcr 9973 Metcme 19780 Bndcbnd 33696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-met 19788 df-bnd 33708 |
This theorem is referenced by: equivbnd2 33721 prdsbnd2 33724 cntotbnd 33725 cnpwstotbnd 33726 |
Copyright terms: Public domain | W3C validator |