MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blometi Structured version   Visualization version   GIF version

Theorem blometi 27786
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
blometi.1 𝑋 = (BaseSet‘𝑈)
blometi.2 𝑌 = (BaseSet‘𝑊)
blometi.8 𝐶 = (IndMet‘𝑈)
blometi.d 𝐷 = (IndMet‘𝑊)
blometi.6 𝑁 = (𝑈 normOpOLD 𝑊)
blometi.7 𝐵 = (𝑈 BLnOp 𝑊)
blometi.u 𝑈 ∈ NrmCVec
blometi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
blometi ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) ≤ ((𝑁𝑇) · (𝑃𝐶𝑄)))

Proof of Theorem blometi
StepHypRef Expression
1 blometi.u . . . . 5 𝑈 ∈ NrmCVec
2 blometi.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 eqid 2651 . . . . . 6 ( −𝑣𝑈) = ( −𝑣𝑈)
42, 3nvmcl 27629 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋𝑄𝑋) → (𝑃( −𝑣𝑈)𝑄) ∈ 𝑋)
51, 4mp3an1 1451 . . . 4 ((𝑃𝑋𝑄𝑋) → (𝑃( −𝑣𝑈)𝑄) ∈ 𝑋)
6 eqid 2651 . . . . 5 (normCV𝑈) = (normCV𝑈)
7 eqid 2651 . . . . 5 (normCV𝑊) = (normCV𝑊)
8 blometi.6 . . . . 5 𝑁 = (𝑈 normOpOLD 𝑊)
9 blometi.7 . . . . 5 𝐵 = (𝑈 BLnOp 𝑊)
10 blometi.w . . . . 5 𝑊 ∈ NrmCVec
112, 6, 7, 8, 9, 1, 10nmblolbi 27783 . . . 4 ((𝑇𝐵 ∧ (𝑃( −𝑣𝑈)𝑄) ∈ 𝑋) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) ≤ ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
125, 11sylan2 490 . . 3 ((𝑇𝐵 ∧ (𝑃𝑋𝑄𝑋)) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) ≤ ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
13123impb 1279 . 2 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) ≤ ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
14 blometi.2 . . . . . . . 8 𝑌 = (BaseSet‘𝑊)
152, 14, 9blof 27768 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇:𝑋𝑌)
161, 10, 15mp3an12 1454 . . . . . 6 (𝑇𝐵𝑇:𝑋𝑌)
1716ffvelrnda 6399 . . . . 5 ((𝑇𝐵𝑃𝑋) → (𝑇𝑃) ∈ 𝑌)
18173adant3 1101 . . . 4 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑇𝑃) ∈ 𝑌)
1916ffvelrnda 6399 . . . . 5 ((𝑇𝐵𝑄𝑋) → (𝑇𝑄) ∈ 𝑌)
20193adant2 1100 . . . 4 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑇𝑄) ∈ 𝑌)
21 eqid 2651 . . . . . 6 ( −𝑣𝑊) = ( −𝑣𝑊)
22 blometi.d . . . . . 6 𝐷 = (IndMet‘𝑊)
2314, 21, 7, 22imsdval 27669 . . . . 5 ((𝑊 ∈ NrmCVec ∧ (𝑇𝑃) ∈ 𝑌 ∧ (𝑇𝑄) ∈ 𝑌) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
2410, 23mp3an1 1451 . . . 4 (((𝑇𝑃) ∈ 𝑌 ∧ (𝑇𝑄) ∈ 𝑌) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
2518, 20, 24syl2anc 694 . . 3 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
26 eqid 2651 . . . . . . 7 (𝑈 LnOp 𝑊) = (𝑈 LnOp 𝑊)
2726, 9bloln 27767 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐵) → 𝑇 ∈ (𝑈 LnOp 𝑊))
281, 10, 27mp3an12 1454 . . . . 5 (𝑇𝐵𝑇 ∈ (𝑈 LnOp 𝑊))
292, 3, 21, 26lnosub 27742 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑃𝑋𝑄𝑋)) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
301, 29mp3anl1 1458 . . . . . . 7 (((𝑊 ∈ NrmCVec ∧ 𝑇 ∈ (𝑈 LnOp 𝑊)) ∧ (𝑃𝑋𝑄𝑋)) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
3110, 30mpanl1 716 . . . . . 6 ((𝑇 ∈ (𝑈 LnOp 𝑊) ∧ (𝑃𝑋𝑄𝑋)) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
32313impb 1279 . . . . 5 ((𝑇 ∈ (𝑈 LnOp 𝑊) ∧ 𝑃𝑋𝑄𝑋) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
3328, 32syl3an1 1399 . . . 4 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑇‘(𝑃( −𝑣𝑈)𝑄)) = ((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄)))
3433fveq2d 6233 . . 3 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))) = ((normCV𝑊)‘((𝑇𝑃)( −𝑣𝑊)(𝑇𝑄))))
3525, 34eqtr4d 2688 . 2 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) = ((normCV𝑊)‘(𝑇‘(𝑃( −𝑣𝑈)𝑄))))
36 blometi.8 . . . . . 6 𝐶 = (IndMet‘𝑈)
372, 3, 6, 36imsdval 27669 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑃𝑋𝑄𝑋) → (𝑃𝐶𝑄) = ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄)))
381, 37mp3an1 1451 . . . 4 ((𝑃𝑋𝑄𝑋) → (𝑃𝐶𝑄) = ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄)))
39383adant1 1099 . . 3 ((𝑇𝐵𝑃𝑋𝑄𝑋) → (𝑃𝐶𝑄) = ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄)))
4039oveq2d 6706 . 2 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑁𝑇) · (𝑃𝐶𝑄)) = ((𝑁𝑇) · ((normCV𝑈)‘(𝑃( −𝑣𝑈)𝑄))))
4113, 35, 403brtr4d 4717 1 ((𝑇𝐵𝑃𝑋𝑄𝑋) → ((𝑇𝑃)𝐷(𝑇𝑄)) ≤ ((𝑁𝑇) · (𝑃𝐶𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  wf 5922  cfv 5926  (class class class)co 6690   · cmul 9979  cle 10113  NrmCVeccnv 27567  BaseSetcba 27569  𝑣 cnsb 27572  normCVcnmcv 27573  IndMetcims 27574   LnOp clno 27723   normOpOLD cnmoo 27724   BLnOp cblo 27725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-grpo 27475  df-gid 27476  df-ginv 27477  df-gdiv 27478  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-vs 27582  df-nmcv 27583  df-ims 27584  df-lno 27727  df-nmoo 27728  df-blo 27729  df-0o 27730
This theorem is referenced by:  blocni  27788
  Copyright terms: Public domain W3C validator