Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blengt1fldiv2p1 Structured version   Visualization version   GIF version

Theorem blengt1fldiv2p1 42712
Description: The binary length of an integer greater than 1 is the binary length of the integer divided by 2, increased by one. (Contributed by AV, 3-Jun-2020.)
Assertion
Ref Expression
blengt1fldiv2p1 (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((#b‘(⌊‘(𝑁 / 2))) + 1))

Proof of Theorem blengt1fldiv2p1
StepHypRef Expression
1 eluz2nn 11764 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 nneop 42645 . . 3 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
31, 2syl 17 . 2 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
4 nnnn0 11337 . . . . . . . . 9 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℕ0)
5 blennn0em1 42710 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b‘(𝑁 / 2)) = ((#b𝑁) − 1))
64, 5sylan2 490 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ) → (#b‘(𝑁 / 2)) = ((#b𝑁) − 1))
76ancoms 468 . . . . . . 7 (((𝑁 / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (#b‘(𝑁 / 2)) = ((#b𝑁) − 1))
87oveq1d 6705 . . . . . 6 (((𝑁 / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((#b‘(𝑁 / 2)) + 1) = (((#b𝑁) − 1) + 1))
9 nnz 11437 . . . . . . . . . . 11 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
10 flid 12649 . . . . . . . . . . 11 ((𝑁 / 2) ∈ ℤ → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
119, 10syl 17 . . . . . . . . . 10 ((𝑁 / 2) ∈ ℕ → (⌊‘(𝑁 / 2)) = (𝑁 / 2))
1211eqcomd 2657 . . . . . . . . 9 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) = (⌊‘(𝑁 / 2)))
1312fveq2d 6233 . . . . . . . 8 ((𝑁 / 2) ∈ ℕ → (#b‘(𝑁 / 2)) = (#b‘(⌊‘(𝑁 / 2))))
1413oveq1d 6705 . . . . . . 7 ((𝑁 / 2) ∈ ℕ → ((#b‘(𝑁 / 2)) + 1) = ((#b‘(⌊‘(𝑁 / 2))) + 1))
1514adantr 480 . . . . . 6 (((𝑁 / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((#b‘(𝑁 / 2)) + 1) = ((#b‘(⌊‘(𝑁 / 2))) + 1))
16 blennnelnn 42695 . . . . . . . . 9 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ)
1716nncnd 11074 . . . . . . . 8 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℂ)
18 npcan1 10493 . . . . . . . 8 ((#b𝑁) ∈ ℂ → (((#b𝑁) − 1) + 1) = (#b𝑁))
1917, 18syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (((#b𝑁) − 1) + 1) = (#b𝑁))
2019adantl 481 . . . . . 6 (((𝑁 / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((#b𝑁) − 1) + 1) = (#b𝑁))
218, 15, 203eqtr3rd 2694 . . . . 5 (((𝑁 / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (#b𝑁) = ((#b‘(⌊‘(𝑁 / 2))) + 1))
2221expcom 450 . . . 4 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ → (#b𝑁) = ((#b‘(⌊‘(𝑁 / 2))) + 1)))
2322, 1syl11 33 . . 3 ((𝑁 / 2) ∈ ℕ → (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((#b‘(⌊‘(𝑁 / 2))) + 1)))
24 nnnn0 11337 . . . . . . 7 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℕ0)
25 blennngt2o2 42711 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))
2624, 25sylan2 490 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))
2726ancoms 468 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℕ ∧ 𝑁 ∈ (ℤ‘2)) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))
28 eluzge2nn0 11765 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
29 nn0ofldiv2 42651 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2))
3028, 24, 29syl2anr 494 . . . . . . . 8 ((((𝑁 + 1) / 2) ∈ ℕ ∧ 𝑁 ∈ (ℤ‘2)) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2))
3130eqcomd 2657 . . . . . . 7 ((((𝑁 + 1) / 2) ∈ ℕ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 1) / 2) = (⌊‘(𝑁 / 2)))
3231fveq2d 6233 . . . . . 6 ((((𝑁 + 1) / 2) ∈ ℕ ∧ 𝑁 ∈ (ℤ‘2)) → (#b‘((𝑁 − 1) / 2)) = (#b‘(⌊‘(𝑁 / 2))))
3332oveq1d 6705 . . . . 5 ((((𝑁 + 1) / 2) ∈ ℕ ∧ 𝑁 ∈ (ℤ‘2)) → ((#b‘((𝑁 − 1) / 2)) + 1) = ((#b‘(⌊‘(𝑁 / 2))) + 1))
3427, 33eqtrd 2685 . . . 4 ((((𝑁 + 1) / 2) ∈ ℕ ∧ 𝑁 ∈ (ℤ‘2)) → (#b𝑁) = ((#b‘(⌊‘(𝑁 / 2))) + 1))
3534ex 449 . . 3 (((𝑁 + 1) / 2) ∈ ℕ → (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((#b‘(⌊‘(𝑁 / 2))) + 1)))
3623, 35jaoi 393 . 2 (((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ) → (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((#b‘(⌊‘(𝑁 / 2))) + 1)))
373, 36mpcom 38 1 (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((#b‘(⌊‘(𝑁 / 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  cc 9972  1c1 9975   + caddc 9977  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725  cfl 12631  #bcblen 42688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-cxp 24349  df-logb 24548  df-blen 42689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator