![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > blen1b | Structured version Visualization version GIF version |
Description: The binary length of a nonnegative integer is 1 if the integer is 0 or 1. (Contributed by AV, 30-May-2020.) |
Ref | Expression |
---|---|
blen1b | ⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11332 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | blennn 42694 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | |
3 | 2 | eqeq1d 2653 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) = 1 ↔ ((⌊‘(2 logb 𝑁)) + 1) = 1)) |
4 | 2rp 11875 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ+ | |
5 | 4 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ+) |
6 | nnrp 11880 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
7 | 1ne2 11278 | . . . . . . . . . . . . 13 ⊢ 1 ≠ 2 | |
8 | 7 | necomi 2877 | . . . . . . . . . . . 12 ⊢ 2 ≠ 1 |
9 | 8 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 2 ≠ 1) |
10 | relogbcl 24556 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ) | |
11 | 5, 6, 9, 10 | syl3anc 1366 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ) |
12 | 11 | flcld 12639 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ) |
13 | 12 | zcnd 11521 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ) |
14 | 1cnd 10094 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) | |
15 | 13, 14, 14 | addlsub 10485 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (⌊‘(2 logb 𝑁)) = (1 − 1))) |
16 | 1m1e0 11127 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
17 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (1 − 1) = 0) |
18 | 17 | eqeq2d 2661 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = (1 − 1) ↔ (⌊‘(2 logb 𝑁)) = 0)) |
19 | 0z 11426 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
20 | flbi 12657 | . . . . . . . 8 ⊢ (((2 logb 𝑁) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)))) | |
21 | 11, 19, 20 | sylancl 695 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) = 0 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)))) |
22 | 15, 18, 21 | 3bitrd 294 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)))) |
23 | 0p1e1 11170 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
24 | 23 | breq2i 4693 | . . . . . . . 8 ⊢ ((2 logb 𝑁) < (0 + 1) ↔ (2 logb 𝑁) < 1) |
25 | 24 | anbi2i 730 | . . . . . . 7 ⊢ ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) |
26 | nnlog2ge0lt1 42685 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))) | |
27 | 26 | biimpar 501 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → 𝑁 = 1) |
28 | 27 | olcd 407 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) → (𝑁 = 0 ∨ 𝑁 = 1)) |
29 | 28 | ex 449 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) → (𝑁 = 0 ∨ 𝑁 = 1))) |
30 | 25, 29 | syl5bi 232 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < (0 + 1)) → (𝑁 = 0 ∨ 𝑁 = 1))) |
31 | 22, 30 | sylbid 230 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
32 | 3, 31 | sylbid 230 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
33 | orc 399 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 = 0 ∨ 𝑁 = 1)) | |
34 | 33 | a1d 25 | . . . 4 ⊢ (𝑁 = 0 → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
35 | 32, 34 | jaoi 393 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
36 | 1, 35 | sylbi 207 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
37 | fveq2 6229 | . . . 4 ⊢ (𝑁 = 0 → (#b‘𝑁) = (#b‘0)) | |
38 | blen0 42691 | . . . 4 ⊢ (#b‘0) = 1 | |
39 | 37, 38 | syl6eq 2701 | . . 3 ⊢ (𝑁 = 0 → (#b‘𝑁) = 1) |
40 | fveq2 6229 | . . . 4 ⊢ (𝑁 = 1 → (#b‘𝑁) = (#b‘1)) | |
41 | blen1 42703 | . . . 4 ⊢ (#b‘1) = 1 | |
42 | 40, 41 | syl6eq 2701 | . . 3 ⊢ (𝑁 = 1 → (#b‘𝑁) = 1) |
43 | 39, 42 | jaoi 393 | . 2 ⊢ ((𝑁 = 0 ∨ 𝑁 = 1) → (#b‘𝑁) = 1) |
44 | 36, 43 | impbid1 215 | 1 ⊢ (𝑁 ∈ ℕ0 → ((#b‘𝑁) = 1 ↔ (𝑁 = 0 ∨ 𝑁 = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 ℝcr 9973 0cc0 9974 1c1 9975 + caddc 9977 < clt 10112 ≤ cle 10113 − cmin 10304 ℕcn 11058 2c2 11108 ℕ0cn0 11330 ℤcz 11415 ℝ+crp 11870 ⌊cfl 12631 logb clogb 24547 #bcblen 42688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ioo 12217 df-ioc 12218 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-mod 12709 df-seq 12842 df-exp 12901 df-fac 13101 df-bc 13130 df-hash 13158 df-shft 13851 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-limsup 14246 df-clim 14263 df-rlim 14264 df-sum 14461 df-ef 14842 df-sin 14844 df-cos 14845 df-pi 14847 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-xrs 16209 df-qtop 16214 df-imas 16215 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-mulg 17588 df-cntz 17796 df-cmn 18241 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-fbas 19791 df-fg 19792 df-cnfld 19795 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cld 20871 df-ntr 20872 df-cls 20873 df-nei 20950 df-lp 20988 df-perf 20989 df-cn 21079 df-cnp 21080 df-haus 21167 df-tx 21413 df-hmeo 21606 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-xms 22172 df-ms 22173 df-tms 22174 df-cncf 22728 df-limc 23675 df-dv 23676 df-log 24348 df-logb 24548 df-blen 42689 |
This theorem is referenced by: nn0sumshdiglem2 42741 |
Copyright terms: Public domain | W3C validator |