MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blbas Structured version   Visualization version   GIF version

Theorem blbas 22455
Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbas (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)

Proof of Theorem blbas
Dummy variables 𝑥 𝑟 𝑏 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blin2 22454 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥𝑦))
2 simpll 750 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝐷 ∈ (∞Met‘𝑋))
3 inss1 3981 . . . . . . . . . . 11 (𝑥𝑦) ⊆ 𝑥
43sseli 3748 . . . . . . . . . 10 (𝑧 ∈ (𝑥𝑦) → 𝑧𝑥)
5 elunii 4579 . . . . . . . . . 10 ((𝑧𝑥𝑥 ∈ ran (ball‘𝐷)) → 𝑧 ran (ball‘𝐷))
64, 5sylan 569 . . . . . . . . 9 ((𝑧 ∈ (𝑥𝑦) ∧ 𝑥 ∈ ran (ball‘𝐷)) → 𝑧 ran (ball‘𝐷))
76ad2ant2lr 742 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝑧 ran (ball‘𝐷))
8 unirnbl 22445 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
98ad2antrr 705 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ran (ball‘𝐷) = 𝑋)
107, 9eleqtrd 2852 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → 𝑧𝑋)
11 blssex 22452 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)) ↔ ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥𝑦)))
122, 10, 11syl2anc 573 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)) ↔ ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ (𝑥𝑦)))
131, 12mpbird 247 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷))) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)))
1413ex 397 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧 ∈ (𝑥𝑦)) → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷)) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦))))
1514ralrimdva 3118 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ∈ ran (ball‘𝐷) ∧ 𝑦 ∈ ran (ball‘𝐷)) → ∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦))))
1615ralrimivv 3119 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)))
17 fvex 6342 . . . 4 (ball‘𝐷) ∈ V
1817rnex 7247 . . 3 ran (ball‘𝐷) ∈ V
19 isbasis2g 20973 . . 3 (ran (ball‘𝐷) ∈ V → (ran (ball‘𝐷) ∈ TopBases ↔ ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦))))
2018, 19ax-mp 5 . 2 (ran (ball‘𝐷) ∈ TopBases ↔ ∀𝑥 ∈ ran (ball‘𝐷)∀𝑦 ∈ ran (ball‘𝐷)∀𝑧 ∈ (𝑥𝑦)∃𝑏 ∈ ran (ball‘𝐷)(𝑧𝑏𝑏 ⊆ (𝑥𝑦)))
2116, 20sylibr 224 1 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  Vcvv 3351  cin 3722  wss 3723   cuni 4574  ran crn 5250  cfv 6031  (class class class)co 6793  +crp 12035  ∞Metcxmt 19946  ballcbl 19948  TopBasesctb 20970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-psmet 19953  df-xmet 19954  df-bl 19956  df-bases 20971
This theorem is referenced by:  mopntopon  22464  elmopn  22467  imasf1oxms  22514  blssopn  22520  metss  22533
  Copyright terms: Public domain W3C validator