MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bl2in Structured version   Visualization version   GIF version

Theorem bl2in 22426
Description: Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
bl2in (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅)

Proof of Theorem bl2in
StepHypRef Expression
1 simpl1 1228 . . 3 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝐷 ∈ (Met‘𝑋))
2 metxmet 22360 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
31, 2syl 17 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝐷 ∈ (∞Met‘𝑋))
4 simpl2 1230 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑃𝑋)
5 simpl3 1232 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑄𝑋)
6 rexr 10297 . . 3 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ*)
76ad2antrl 766 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℝ*)
8 simprl 811 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℝ)
9 rexadd 12276 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑅 +𝑒 𝑅) = (𝑅 + 𝑅))
108, 8, 9syl2anc 696 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) = (𝑅 + 𝑅))
118recnd 10280 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → 𝑅 ∈ ℂ)
12112timesd 11487 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (2 · 𝑅) = (𝑅 + 𝑅))
1310, 12eqtr4d 2797 . . 3 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) = (2 · 𝑅))
14 id 22 . . . . . 6 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ)
15 metcl 22358 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) → (𝑃𝐷𝑄) ∈ ℝ)
16 2re 11302 . . . . . . . 8 2 ∈ ℝ
17 2pos 11324 . . . . . . . 8 0 < 2
1816, 17pm3.2i 470 . . . . . . 7 (2 ∈ ℝ ∧ 0 < 2)
19 lemuldiv2 11116 . . . . . . 7 ((𝑅 ∈ ℝ ∧ (𝑃𝐷𝑄) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2)))
2018, 19mp3an3 1562 . . . . . 6 ((𝑅 ∈ ℝ ∧ (𝑃𝐷𝑄) ∈ ℝ) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2)))
2114, 15, 20syl2anr 496 . . . . 5 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ 𝑅 ∈ ℝ) → ((2 · 𝑅) ≤ (𝑃𝐷𝑄) ↔ 𝑅 ≤ ((𝑃𝐷𝑄) / 2)))
2221biimprd 238 . . . 4 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ 𝑅 ∈ ℝ) → (𝑅 ≤ ((𝑃𝐷𝑄) / 2) → (2 · 𝑅) ≤ (𝑃𝐷𝑄)))
2322impr 650 . . 3 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (2 · 𝑅) ≤ (𝑃𝐷𝑄))
2413, 23eqbrtrd 4826 . 2 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → (𝑅 +𝑒 𝑅) ≤ (𝑃𝐷𝑄))
25 bldisj 22424 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑅 ∈ ℝ* ∧ (𝑅 +𝑒 𝑅) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅)
263, 4, 5, 7, 7, 24, 25syl33anc 1492 1 (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  cin 3714  c0 4058   class class class wbr 4804  cfv 6049  (class class class)co 6814  cr 10147  0cc0 10148   + caddc 10151   · cmul 10153  *cxr 10285   < clt 10286  cle 10287   / cdiv 10896  2c2 11282   +𝑒 cxad 12157  ∞Metcxmt 19953  Metcme 19954  ballcbl 19955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-2 11291  df-xneg 12159  df-xadd 12160  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator