![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-vecssmod | Structured version Visualization version GIF version |
Description: Vector spaces are modules. (Contributed by BJ, 9-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-vecssmod | ⊢ LVec ⊆ LMod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lvec 19326 | . 2 ⊢ LVec = {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} | |
2 | ssrab2 3829 | . 2 ⊢ {𝑥 ∈ LMod ∣ (Scalar‘𝑥) ∈ DivRing} ⊆ LMod | |
3 | 1, 2 | eqsstri 3777 | 1 ⊢ LVec ⊆ LMod |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2140 {crab 3055 ⊆ wss 3716 ‘cfv 6050 Scalarcsca 16167 DivRingcdr 18970 LModclmod 19086 LVecclvec 19325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rab 3060 df-in 3723 df-ss 3730 df-lvec 19326 |
This theorem is referenced by: bj-vecssmodel 33474 bj-rrvecsscmn 33482 |
Copyright terms: Public domain | W3C validator |