![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagn0 | Structured version Visualization version GIF version |
Description: The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-tagn0 | ⊢ tag 𝐴 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-0eltag 33291 | . 2 ⊢ ∅ ∈ tag 𝐴 | |
2 | 1 | ne0ii 4067 | 1 ⊢ tag 𝐴 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2933 ∅c0 4059 tag bj-ctag 33287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-nul 4942 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-v 3343 df-dif 3719 df-un 3721 df-nul 4060 df-sn 4323 df-bj-tag 33288 |
This theorem is referenced by: bj-1upln0 33322 bj-2upln1upl 33337 |
Copyright terms: Public domain | W3C validator |