![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tageq | Structured version Visualization version GIF version |
Description: Substitution property for tag. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tageq | ⊢ (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sngleq 33286 | . . 3 ⊢ (𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵) | |
2 | 1 | uneq1d 3917 | . 2 ⊢ (𝐴 = 𝐵 → (sngl 𝐴 ∪ {∅}) = (sngl 𝐵 ∪ {∅})) |
3 | df-bj-tag 33294 | . 2 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
4 | df-bj-tag 33294 | . 2 ⊢ tag 𝐵 = (sngl 𝐵 ∪ {∅}) | |
5 | 2, 3, 4 | 3eqtr4g 2830 | 1 ⊢ (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∪ cun 3721 ∅c0 4063 {csn 4317 sngl bj-csngl 33284 tag bj-ctag 33293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rex 3067 df-v 3353 df-un 3728 df-bj-sngl 33285 df-bj-tag 33294 |
This theorem is referenced by: bj-xtageq 33307 |
Copyright terms: Public domain | W3C validator |