Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbid2 Structured version   Visualization version   GIF version

Theorem bj-ssbid2 32982
Description: A special case of bj-ssbequ2 32980. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
bj-ssbid2 ([𝑥/𝑥]b𝜑𝜑)

Proof of Theorem bj-ssbid2
StepHypRef Expression
1 equid 2097 . 2 𝑥 = 𝑥
2 bj-ssbequ2 32980 . 2 (𝑥 = 𝑥 → ([𝑥/𝑥]b𝜑𝜑))
31, 2ax-mp 5 1 ([𝑥/𝑥]b𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wssb 32957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-12 2203
This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1853  df-ssb 32958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator