![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ssb1 | Structured version Visualization version GIF version |
Description: A simplified definition of substitution in case of disjoint variables. See bj-ssb1a 32757 for the backward implication, which does not require ax-11 2074 (note that here, the version of ax-11 2074 with disjoint setvar metavariables would suffice). Compare sb6 2457. (Contributed by BJ, 22-Dec-2020.) |
Ref | Expression |
---|---|
bj-ssb1 | ⊢ ([𝑡/𝑥]b𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1908 | . . 3 ⊢ (∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | 1 | albii 1787 | . 2 ⊢ (∀𝑦∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
3 | 19.23v 1911 | . . . . 5 ⊢ (∀𝑦(𝑦 = 𝑡 → (𝑥 = 𝑡 → 𝜑)) ↔ (∃𝑦 𝑦 = 𝑡 → (𝑥 = 𝑡 → 𝜑))) | |
4 | equequ2 1999 | . . . . . . . 8 ⊢ (𝑦 = 𝑡 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) | |
5 | 4 | imbi1d 330 | . . . . . . 7 ⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
6 | 5 | pm5.74i 260 | . . . . . 6 ⊢ ((𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 → (𝑥 = 𝑡 → 𝜑))) |
7 | 6 | albii 1787 | . . . . 5 ⊢ (∀𝑦(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → (𝑥 = 𝑡 → 𝜑))) |
8 | ax6ev 1947 | . . . . . 6 ⊢ ∃𝑦 𝑦 = 𝑡 | |
9 | 8 | a1bi 351 | . . . . 5 ⊢ ((𝑥 = 𝑡 → 𝜑) ↔ (∃𝑦 𝑦 = 𝑡 → (𝑥 = 𝑡 → 𝜑))) |
10 | 3, 7, 9 | 3bitr4ri 293 | . . . 4 ⊢ ((𝑥 = 𝑡 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑))) |
11 | 10 | albii 1787 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ ∀𝑥∀𝑦(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑))) |
12 | alcom 2077 | . . 3 ⊢ (∀𝑥∀𝑦(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑))) | |
13 | 11, 12 | bitri 264 | . 2 ⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) ↔ ∀𝑦∀𝑥(𝑦 = 𝑡 → (𝑥 = 𝑦 → 𝜑))) |
14 | df-ssb 32745 | . 2 ⊢ ([𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
15 | 2, 13, 14 | 3bitr4ri 293 | 1 ⊢ ([𝑡/𝑥]b𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 ∃wex 1744 [wssb 32744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-11 2074 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-ssb 32745 |
This theorem is referenced by: bj-ax12ssb 32760 bj-ssbssblem 32774 bj-ssbcom3lem 32775 |
Copyright terms: Public domain | W3C validator |