Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglsstag Structured version   Visualization version   GIF version

Theorem bj-snglsstag 33294
 Description: The singletonization is included in the tagging. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglsstag sngl 𝐴 ⊆ tag 𝐴

Proof of Theorem bj-snglsstag
StepHypRef Expression
1 ssun1 3925 . 2 sngl 𝐴 ⊆ (sngl 𝐴 ∪ {∅})
2 df-bj-tag 33288 . 2 tag 𝐴 = (sngl 𝐴 ∪ {∅})
31, 2sseqtr4i 3785 1 sngl 𝐴 ⊆ tag 𝐴
 Colors of variables: wff setvar class Syntax hints:   ∪ cun 3719   ⊆ wss 3721  ∅c0 4061  {csn 4314  sngl bj-csngl 33278  tag bj-ctag 33287 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-v 3351  df-un 3726  df-in 3728  df-ss 3735  df-bj-tag 33288 This theorem is referenced by:  bj-sngltagi  33295
 Copyright terms: Public domain W3C validator