![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglss | Structured version Visualization version GIF version |
Description: The singletonization of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-snglss | ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-elsngl 33081 | . . . . 5 ⊢ (𝑥 ∈ sngl 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}) | |
2 | df-rex 2947 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 𝑥 = {𝑦} ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑥 = {𝑦})) | |
3 | snssi 4371 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ⊆ 𝐴) | |
4 | sseq1 3659 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝑥 ⊆ 𝐴 ↔ {𝑦} ⊆ 𝐴)) | |
5 | 4 | biimparc 503 | . . . . . . . 8 ⊢ (({𝑦} ⊆ 𝐴 ∧ 𝑥 = {𝑦}) → 𝑥 ⊆ 𝐴) |
6 | 3, 5 | sylan 487 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = {𝑦}) → 𝑥 ⊆ 𝐴) |
7 | 6 | eximi 1802 | . . . . . 6 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑥 = {𝑦}) → ∃𝑦 𝑥 ⊆ 𝐴) |
8 | 2, 7 | sylbi 207 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 𝑥 = {𝑦} → ∃𝑦 𝑥 ⊆ 𝐴) |
9 | 1, 8 | sylbi 207 | . . . 4 ⊢ (𝑥 ∈ sngl 𝐴 → ∃𝑦 𝑥 ⊆ 𝐴) |
10 | ax5e 1881 | . . . 4 ⊢ (∃𝑦 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐴) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑥 ∈ sngl 𝐴 → 𝑥 ⊆ 𝐴) |
12 | selpw 4198 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
13 | 11, 12 | sylibr 224 | . 2 ⊢ (𝑥 ∈ sngl 𝐴 → 𝑥 ∈ 𝒫 𝐴) |
14 | 13 | ssriv 3640 | 1 ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ∃wrex 2942 ⊆ wss 3607 𝒫 cpw 4191 {csn 4210 sngl bj-csngl 33078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-pw 4193 df-sn 4211 df-pr 4213 df-bj-sngl 33079 |
This theorem is referenced by: bj-snglex 33086 bj-tagss 33093 |
Copyright terms: Public domain | W3C validator |