![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sels | Structured version Visualization version GIF version |
Description: If a class is a set, then it is a member of a set. (Contributed by BJ, 3-Apr-2019.) |
Ref | Expression |
---|---|
bj-sels | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4351 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | sbcel2 4132 | . . . 4 ⊢ ([{𝐴} / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ⦋{𝐴} / 𝑥⦌𝑥) | |
3 | snex 5057 | . . . . . 6 ⊢ {𝐴} ∈ V | |
4 | csbvarg 4146 | . . . . . 6 ⊢ ({𝐴} ∈ V → ⦋{𝐴} / 𝑥⦌𝑥 = {𝐴}) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ⦋{𝐴} / 𝑥⦌𝑥 = {𝐴} |
6 | 5 | eleq2i 2831 | . . . 4 ⊢ (𝐴 ∈ ⦋{𝐴} / 𝑥⦌𝑥 ↔ 𝐴 ∈ {𝐴}) |
7 | 2, 6 | bitri 264 | . . 3 ⊢ ([{𝐴} / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴}) |
8 | 1, 7 | sylibr 224 | . 2 ⊢ (𝐴 ∈ 𝑉 → [{𝐴} / 𝑥]𝐴 ∈ 𝑥) |
9 | 8 | spesbcd 3663 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∃wex 1853 ∈ wcel 2139 Vcvv 3340 [wsbc 3576 ⦋csb 3674 {csn 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-nul 4059 df-sn 4322 df-pr 4324 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |