Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbftv Structured version   Visualization version   GIF version

Theorem bj-sbftv 33100
Description: Version of sbft 2524 with a dv condition, which does not require ax-13 2406. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-sbftv (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-sbftv
StepHypRef Expression
1 spsbe 2051 . . 3 ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑)
2 19.9t 2225 . . 3 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
31, 2syl5ib 234 . 2 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
4 nf5r 2216 . . 3 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
5 bj-stdpc4v 33091 . . 3 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
64, 5syl6 35 . 2 (Ⅎ𝑥𝜑 → (𝜑 → [𝑦 / 𝑥]𝜑))
73, 6impbid 202 1 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1627  wex 1850  wnf 1854  [wsb 2047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-12 2201
This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1851  df-nf 1856  df-sb 2048
This theorem is referenced by:  bj-sbfv  33101
  Copyright terms: Public domain W3C validator