Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbex Structured version   Visualization version   GIF version

Theorem bj-sbex 32601
 Description: If a proposition is true for a specific instance, then there exists an instance such that it is true for it. Uses only ax-1--6. Compare spsbe 1882 which, due to the specific form of df-sb 1879, uses fewer axioms. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
bj-sbex ([𝑡/𝑥]b𝜑 → ∃𝑥𝜑)

Proof of Theorem bj-sbex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ssb 32595 . . 3 ([𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 ax6ev 1888 . . . 4 𝑦 𝑦 = 𝑡
3 exim 1759 . . . 4 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → (∃𝑦 𝑦 = 𝑡 → ∃𝑦𝑥(𝑥 = 𝑦𝜑)))
42, 3mpi 20 . . 3 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) → ∃𝑦𝑥(𝑥 = 𝑦𝜑))
51, 4sylbi 207 . 2 ([𝑡/𝑥]b𝜑 → ∃𝑦𝑥(𝑥 = 𝑦𝜑))
6 exim 1759 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑))
76eximi 1760 . 2 (∃𝑦𝑥(𝑥 = 𝑦𝜑) → ∃𝑦(∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑))
8 ax6ev 1888 . . . 4 𝑥 𝑥 = 𝑦
9 pm2.27 42 . . . 4 (∃𝑥 𝑥 = 𝑦 → ((∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑) → ∃𝑥𝜑))
108, 9ax-mp 5 . . 3 ((∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑) → ∃𝑥𝜑)
1110exlimiv 1856 . 2 (∃𝑦(∃𝑥 𝑥 = 𝑦 → ∃𝑥𝜑) → ∃𝑥𝜑)
125, 7, 113syl 18 1 ([𝑡/𝑥]b𝜑 → ∃𝑥𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1479  ∃wex 1702  [wssb 32594 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886 This theorem depends on definitions:  df-bi 197  df-ex 1703  df-ssb 32595 This theorem is referenced by:  bj-ssbft  32617
 Copyright terms: Public domain W3C validator