![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru | Structured version Visualization version GIF version |
Description: Remove dependency on ax-13 2282 (and df-v 3233) from Russell's paradox ru 3467 expressed with primitive symbols and with a class variable 𝑉 (note that axsep2 4815 does require ax-8 2032 and ax-9 2039 since it requires df-clel 2647 and df-cleq 2644--- see bj-df-clel 33013 and bj-df-cleq 33018). Note the more economical use of bj-elissetv 32986 instead of isset 3238 to avoid use of df-v 3233. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ru | ⊢ ¬ {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ru1 33058 | . 2 ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} | |
2 | bj-elissetv 32986 | . 2 ⊢ ({𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 → ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥}) | |
3 | 1, 2 | mto 188 | 1 ⊢ ¬ {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1523 ∃wex 1744 ∈ wcel 2030 {cab 2637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |