![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rrhatsscchat | Structured version Visualization version GIF version |
Description: The real projective line is included in the complex projective line. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-rrhatsscchat | ⊢ ℝ̂ ⊆ ℂ̂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axresscn 10157 | . . 3 ⊢ ℝ ⊆ ℂ | |
2 | unss1 3921 | . . 3 ⊢ (ℝ ⊆ ℂ → (ℝ ∪ {∞}) ⊆ (ℂ ∪ {∞})) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (ℝ ∪ {∞}) ⊆ (ℂ ∪ {∞}) |
4 | df-bj-rrhat 33429 | . 2 ⊢ ℝ̂ = (ℝ ∪ {∞}) | |
5 | df-bj-cchat 33427 | . 2 ⊢ ℂ̂ = (ℂ ∪ {∞}) | |
6 | 3, 4, 5 | 3sstr4i 3781 | 1 ⊢ ℝ̂ ⊆ ℂ̂ |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3709 ⊆ wss 3711 {csn 4317 ℂcc 10122 ℝcr 10123 ∞cinfty 33424 ℂ̂ccchat 33426 ℝ̂crrhat 33428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-inf2 8707 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1st 7329 df-2nd 7330 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-oadd 7729 df-omul 7730 df-er 7907 df-ec 7909 df-qs 7913 df-ni 9882 df-pli 9883 df-mi 9884 df-lti 9885 df-plpq 9918 df-mpq 9919 df-ltpq 9920 df-enq 9921 df-nq 9922 df-erq 9923 df-plq 9924 df-mq 9925 df-1nq 9926 df-rq 9927 df-ltnq 9928 df-np 9991 df-1p 9992 df-enr 10065 df-nr 10066 df-0r 10070 df-c 10130 df-r 10134 df-bj-cchat 33427 df-bj-rrhat 33429 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |