Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restsnss2 Structured version   Visualization version   GIF version

Theorem bj-restsnss2 33362
Description: Special case of bj-restsn 33360. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restsnss2 ((𝐴𝑉𝑌𝐴) → ({𝑌} ↾t 𝐴) = {𝑌})

Proof of Theorem bj-restsnss2
StepHypRef Expression
1 df-ss 3730 . . 3 (𝑌𝐴 ↔ (𝑌𝐴) = 𝑌)
2 sneq 4332 . . 3 ((𝑌𝐴) = 𝑌 → {(𝑌𝐴)} = {𝑌})
31, 2sylbi 207 . 2 (𝑌𝐴 → {(𝑌𝐴)} = {𝑌})
4 ssexg 4957 . . . 4 ((𝑌𝐴𝐴𝑉) → 𝑌 ∈ V)
54ancoms 468 . . 3 ((𝐴𝑉𝑌𝐴) → 𝑌 ∈ V)
6 bj-restsn 33360 . . . 4 ((𝑌 ∈ V ∧ 𝐴𝑉) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
76ancoms 468 . . 3 ((𝐴𝑉𝑌 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
85, 7syldan 488 . 2 ((𝐴𝑉𝑌𝐴) → ({𝑌} ↾t 𝐴) = {(𝑌𝐴)})
9 eqeq2 2772 . . 3 ({(𝑌𝐴)} = {𝑌} → (({𝑌} ↾t 𝐴) = {(𝑌𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝑌}))
109biimpa 502 . 2 (({(𝑌𝐴)} = {𝑌} ∧ ({𝑌} ↾t 𝐴) = {(𝑌𝐴)}) → ({𝑌} ↾t 𝐴) = {𝑌})
113, 8, 10syl2an2 910 1 ((𝐴𝑉𝑌𝐴) → ({𝑌} ↾t 𝐴) = {𝑌})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  Vcvv 3341  cin 3715  wss 3716  {csn 4322  (class class class)co 6815  t crest 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-rest 16306
This theorem is referenced by:  bj-restsn0  33363
  Copyright terms: Public domain W3C validator