![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restsnss2 | Structured version Visualization version GIF version |
Description: Special case of bj-restsn 33360. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restsnss2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {𝑌}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3730 | . . 3 ⊢ (𝑌 ⊆ 𝐴 ↔ (𝑌 ∩ 𝐴) = 𝑌) | |
2 | sneq 4332 | . . 3 ⊢ ((𝑌 ∩ 𝐴) = 𝑌 → {(𝑌 ∩ 𝐴)} = {𝑌}) | |
3 | 1, 2 | sylbi 207 | . 2 ⊢ (𝑌 ⊆ 𝐴 → {(𝑌 ∩ 𝐴)} = {𝑌}) |
4 | ssexg 4957 | . . . 4 ⊢ ((𝑌 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑌 ∈ V) | |
5 | 4 | ancoms 468 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → 𝑌 ∈ V) |
6 | bj-restsn 33360 | . . . 4 ⊢ ((𝑌 ∈ V ∧ 𝐴 ∈ 𝑉) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) | |
7 | 6 | ancoms 468 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ∈ V) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
8 | 5, 7 | syldan 488 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) |
9 | eqeq2 2772 | . . 3 ⊢ ({(𝑌 ∩ 𝐴)} = {𝑌} → (({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)} ↔ ({𝑌} ↾t 𝐴) = {𝑌})) | |
10 | 9 | biimpa 502 | . 2 ⊢ (({(𝑌 ∩ 𝐴)} = {𝑌} ∧ ({𝑌} ↾t 𝐴) = {(𝑌 ∩ 𝐴)}) → ({𝑌} ↾t 𝐴) = {𝑌}) |
11 | 3, 8, 10 | syl2an2 910 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑌 ⊆ 𝐴) → ({𝑌} ↾t 𝐴) = {𝑌}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 Vcvv 3341 ∩ cin 3715 ⊆ wss 3716 {csn 4322 (class class class)co 6815 ↾t crest 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-rest 16306 |
This theorem is referenced by: bj-restsn0 33363 |
Copyright terms: Public domain | W3C validator |