Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restn0 Structured version   Visualization version   GIF version

Theorem bj-restn0 33375
Description: An elementwise intersection on a nonempty family is nonempty. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restn0 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → (𝑋t 𝐴) ≠ ∅))

Proof of Theorem bj-restn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4078 . . . 4 (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦𝑋)
2 vex 3354 . . . . . . . . . . 11 𝑦 ∈ V
32inex1 4933 . . . . . . . . . 10 (𝑦𝐴) ∈ V
43isseti 3361 . . . . . . . . 9 𝑥 𝑥 = (𝑦𝐴)
54jctr 514 . . . . . . . 8 (𝑦𝑋 → (𝑦𝑋 ∧ ∃𝑥 𝑥 = (𝑦𝐴)))
65eximi 1910 . . . . . . 7 (∃𝑦 𝑦𝑋 → ∃𝑦(𝑦𝑋 ∧ ∃𝑥 𝑥 = (𝑦𝐴)))
7 df-rex 3067 . . . . . . 7 (∃𝑦𝑋𝑥 𝑥 = (𝑦𝐴) ↔ ∃𝑦(𝑦𝑋 ∧ ∃𝑥 𝑥 = (𝑦𝐴)))
86, 7sylibr 224 . . . . . 6 (∃𝑦 𝑦𝑋 → ∃𝑦𝑋𝑥 𝑥 = (𝑦𝐴))
9 rexcom4 3377 . . . . . 6 (∃𝑦𝑋𝑥 𝑥 = (𝑦𝐴) ↔ ∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴))
108, 9sylib 208 . . . . 5 (∃𝑦 𝑦𝑋 → ∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴))
1110a1i 11 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦 𝑦𝑋 → ∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴)))
121, 11syl5bi 232 . . 3 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → ∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴)))
13 elrest 16296 . . . . 5 ((𝑋𝑉𝐴𝑊) → (𝑥 ∈ (𝑋t 𝐴) ↔ ∃𝑦𝑋 𝑥 = (𝑦𝐴)))
1413biimprd 238 . . . 4 ((𝑋𝑉𝐴𝑊) → (∃𝑦𝑋 𝑥 = (𝑦𝐴) → 𝑥 ∈ (𝑋t 𝐴)))
1514eximdv 1998 . . 3 ((𝑋𝑉𝐴𝑊) → (∃𝑥𝑦𝑋 𝑥 = (𝑦𝐴) → ∃𝑥 𝑥 ∈ (𝑋t 𝐴)))
1612, 15syld 47 . 2 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → ∃𝑥 𝑥 ∈ (𝑋t 𝐴)))
17 n0 4078 . 2 ((𝑋t 𝐴) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑋t 𝐴))
1816, 17syl6ibr 242 1 ((𝑋𝑉𝐴𝑊) → (𝑋 ≠ ∅ → (𝑋t 𝐴) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wex 1852  wcel 2145  wne 2943  wrex 3062  cin 3722  c0 4063  (class class class)co 6793  t crest 16289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-rest 16291
This theorem is referenced by:  bj-restn0b  33376
  Copyright terms: Public domain W3C validator