Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restb Structured version   Visualization version   GIF version

Theorem bj-restb 33172
Description: An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restb (𝑋𝑉 → ((𝐴𝐵𝐵𝑋) → 𝐴 ∈ (𝑋t 𝐴)))

Proof of Theorem bj-restb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . 8 (𝐴𝐵𝐴𝐵)
2 ssid 3657 . . . . . . . . 9 𝐴𝐴
32a1i 11 . . . . . . . 8 (𝐴𝐵𝐴𝐴)
41, 3ssind 3870 . . . . . . 7 (𝐴𝐵𝐴 ⊆ (𝐵𝐴))
5 inss2 3867 . . . . . . . 8 (𝐵𝐴) ⊆ 𝐴
65a1i 11 . . . . . . 7 (𝐴𝐵 → (𝐵𝐴) ⊆ 𝐴)
74, 6eqssd 3653 . . . . . 6 (𝐴𝐵𝐴 = (𝐵𝐴))
8 eleq1 2718 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦𝑋𝐵𝑋))
9 ineq1 3840 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦𝐴) = (𝐵𝐴))
109eqeq2d 2661 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 = (𝑦𝐴) ↔ 𝐴 = (𝐵𝐴)))
118, 10anbi12d 747 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑦𝑋𝐴 = (𝑦𝐴)) ↔ (𝐵𝑋𝐴 = (𝐵𝐴))))
1211spcegv 3325 . . . . . . . 8 (𝐵𝑋 → ((𝐵𝑋𝐴 = (𝐵𝐴)) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴))))
1312expd 451 . . . . . . 7 (𝐵𝑋 → (𝐵𝑋 → (𝐴 = (𝐵𝐴) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴)))))
1413pm2.43i 52 . . . . . 6 (𝐵𝑋 → (𝐴 = (𝐵𝐴) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴))))
157, 14mpan9 485 . . . . 5 ((𝐴𝐵𝐵𝑋) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴)))
16 df-rex 2947 . . . . 5 (∃𝑦𝑋 𝐴 = (𝑦𝐴) ↔ ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴)))
1715, 16sylibr 224 . . . 4 ((𝐴𝐵𝐵𝑋) → ∃𝑦𝑋 𝐴 = (𝑦𝐴))
1817adantl 481 . . 3 ((𝑋𝑉 ∧ (𝐴𝐵𝐵𝑋)) → ∃𝑦𝑋 𝐴 = (𝑦𝐴))
19 ssexg 4837 . . . 4 ((𝐴𝐵𝐵𝑋) → 𝐴 ∈ V)
20 elrest 16135 . . . 4 ((𝑋𝑉𝐴 ∈ V) → (𝐴 ∈ (𝑋t 𝐴) ↔ ∃𝑦𝑋 𝐴 = (𝑦𝐴)))
2119, 20sylan2 490 . . 3 ((𝑋𝑉 ∧ (𝐴𝐵𝐵𝑋)) → (𝐴 ∈ (𝑋t 𝐴) ↔ ∃𝑦𝑋 𝐴 = (𝑦𝐴)))
2218, 21mpbird 247 . 2 ((𝑋𝑉 ∧ (𝐴𝐵𝐵𝑋)) → 𝐴 ∈ (𝑋t 𝐴))
2322ex 449 1 (𝑋𝑉 → ((𝐴𝐵𝐵𝑋) → 𝐴 ∈ (𝑋t 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wrex 2942  Vcvv 3231  cin 3606  wss 3607  (class class class)co 6690  t crest 16128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-rest 16130
This theorem is referenced by:  bj-restv  33173  bj-resta  33174
  Copyright terms: Public domain W3C validator