Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rest10b Structured version   Visualization version   GIF version

Theorem bj-rest10b 33366
Description: Alternate version of bj-rest10 33365. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-rest10b (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋t ∅) = {∅})

Proof of Theorem bj-rest10b
StepHypRef Expression
1 eldif 3725 . . 3 (𝑋 ∈ (𝑉 ∖ {∅}) ↔ (𝑋𝑉 ∧ ¬ 𝑋 ∈ {∅}))
2 0ex 4942 . . . . . 6 ∅ ∈ V
32elsn2 4356 . . . . 5 (𝑋 ∈ {∅} ↔ 𝑋 = ∅)
4 neqne 2940 . . . . 5 𝑋 = ∅ → 𝑋 ≠ ∅)
53, 4sylnbi 319 . . . 4 𝑋 ∈ {∅} → 𝑋 ≠ ∅)
65anim2i 594 . . 3 ((𝑋𝑉 ∧ ¬ 𝑋 ∈ {∅}) → (𝑋𝑉𝑋 ≠ ∅))
71, 6sylbi 207 . 2 (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋𝑉𝑋 ≠ ∅))
8 bj-rest10 33365 . . 3 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))
98imp 444 . 2 ((𝑋𝑉𝑋 ≠ ∅) → (𝑋t ∅) = {∅})
107, 9syl 17 1 (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋t ∅) = {∅})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  cdif 3712  c0 4058  {csn 4321  (class class class)co 6814  t crest 16303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-rest 16305
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator