![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rest10b | Structured version Visualization version GIF version |
Description: Alternate version of bj-rest10 33365. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-rest10b | ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋 ↾t ∅) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3725 | . . 3 ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) ↔ (𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ {∅})) | |
2 | 0ex 4942 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | 2 | elsn2 4356 | . . . . 5 ⊢ (𝑋 ∈ {∅} ↔ 𝑋 = ∅) |
4 | neqne 2940 | . . . . 5 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
5 | 3, 4 | sylnbi 319 | . . . 4 ⊢ (¬ 𝑋 ∈ {∅} → 𝑋 ≠ ∅) |
6 | 5 | anim2i 594 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ {∅}) → (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅)) |
7 | 1, 6 | sylbi 207 | . 2 ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅)) |
8 | bj-rest10 33365 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) | |
9 | 8 | imp 444 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑋 ↾t ∅) = {∅}) |
10 | 7, 9 | syl 17 | 1 ⊢ (𝑋 ∈ (𝑉 ∖ {∅}) → (𝑋 ↾t ∅) = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∖ cdif 3712 ∅c0 4058 {csn 4321 (class class class)co 6814 ↾t crest 16303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-rest 16305 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |