Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nexrt Structured version   Visualization version   GIF version

Theorem bj-nexrt 32377
Description: Closed form of nexr 2060. Contrapositive of 19.8a 2049. (Contributed by BJ, 20-Oct-2019.)
Assertion
Ref Expression
bj-nexrt (¬ ∃𝑥𝜑 → ¬ 𝜑)

Proof of Theorem bj-nexrt
StepHypRef Expression
1 19.8a 2049 . 2 (𝜑 → ∃𝑥𝜑)
21con3i 150 1 (¬ ∃𝑥𝜑 → ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wex 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-12 2044
This theorem depends on definitions:  df-bi 197  df-ex 1702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator