![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoore | Structured version Visualization version GIF version |
Description: Characterization of Moore collections among sets. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismoore | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4300 | . . 3 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
2 | unieq 4582 | . . . . 5 ⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴) | |
3 | 2 | ineq1d 3964 | . . . 4 ⊢ (𝑦 = 𝐴 → (∪ 𝑦 ∩ ∩ 𝑥) = (∪ 𝐴 ∩ ∩ 𝑥)) |
4 | id 22 | . . . 4 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
5 | 3, 4 | eleq12d 2844 | . . 3 ⊢ (𝑦 = 𝐴 → ((∪ 𝑦 ∩ ∩ 𝑥) ∈ 𝑦 ↔ (∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
6 | 1, 5 | raleqbidv 3301 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝒫 𝑦(∪ 𝑦 ∩ ∩ 𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
7 | df-bj-moore 33390 | . 2 ⊢ Moore = {𝑦 ∣ ∀𝑥 ∈ 𝒫 𝑦(∪ 𝑦 ∩ ∩ 𝑥) ∈ 𝑦} | |
8 | 6, 7 | elab2g 3504 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∩ cin 3722 𝒫 cpw 4297 ∪ cuni 4574 ∩ cint 4611 Moorecmoore 33389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-v 3353 df-in 3730 df-ss 3737 df-pw 4299 df-uni 4575 df-bj-moore 33390 |
This theorem is referenced by: bj-ismoorec 33392 bj-ismoored0 33393 bj-ismooredr 33396 bj-ismooredr2 33397 |
Copyright terms: Public domain | W3C validator |