Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inrab3 Structured version   Visualization version   GIF version

Theorem bj-inrab3 33231
Description: Generalization of dfrab3ss 4048, which it may shorten. (Contributed by BJ, 21-Apr-2019.) (Revised by OpenAI, 7-Jul-2020.)
Assertion
Ref Expression
bj-inrab3 (𝐴 ∩ {𝑥𝐵𝜑}) = ({𝑥𝐴𝜑} ∩ 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-inrab3
StepHypRef Expression
1 dfrab3 4045 . . 3 {𝑥𝐵𝜑} = (𝐵 ∩ {𝑥𝜑})
21ineq2i 3954 . 2 (𝐴 ∩ {𝑥𝐵𝜑}) = (𝐴 ∩ (𝐵 ∩ {𝑥𝜑}))
3 dfrab3 4045 . . . 4 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
43ineq2i 3954 . . 3 (𝐵 ∩ {𝑥𝐴𝜑}) = (𝐵 ∩ (𝐴 ∩ {𝑥𝜑}))
5 incom 3948 . . 3 ({𝑥𝐴𝜑} ∩ 𝐵) = (𝐵 ∩ {𝑥𝐴𝜑})
6 in12 3967 . . 3 (𝐴 ∩ (𝐵 ∩ {𝑥𝜑})) = (𝐵 ∩ (𝐴 ∩ {𝑥𝜑}))
74, 5, 63eqtr4i 2792 . 2 ({𝑥𝐴𝜑} ∩ 𝐵) = (𝐴 ∩ (𝐵 ∩ {𝑥𝜑}))
82, 7eqtr4i 2785 1 (𝐴 ∩ {𝑥𝐵𝜑}) = ({𝑥𝐴𝜑} ∩ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  {cab 2746  {crab 3054  cin 3714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rab 3059  df-v 3342  df-in 3722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator