Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpidisj Structured version   Visualization version   GIF version

Theorem bj-inftyexpidisj 32769
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 22-Jun-2019.) This utility theorem is irrelevant and should generally not be used. (New usage is discouraged.)
Assertion
Ref Expression
bj-inftyexpidisj ¬ (inftyexpi ‘𝐴) ∈ ℂ

Proof of Theorem bj-inftyexpidisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4377 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, ℂ⟩ = ⟨𝐴, ℂ⟩)
2 df-bj-inftyexpi 32766 . . . . 5 inftyexpi = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
3 opex 4903 . . . . 5 𝐴, ℂ⟩ ∈ V
41, 2, 3fvmpt 6249 . . . 4 (𝐴 ∈ (-π(,]π) → (inftyexpi ‘𝐴) = ⟨𝐴, ℂ⟩)
5 opex 4903 . . . . 5 𝑥, ℂ⟩ ∈ V
65, 2dmmpti 5990 . . . 4 dom inftyexpi = (-π(,]π)
74, 6eleq2s 2716 . . 3 (𝐴 ∈ dom inftyexpi → (inftyexpi ‘𝐴) = ⟨𝐴, ℂ⟩)
8 cnex 9977 . . . . . . 7 ℂ ∈ V
98prid2 4275 . . . . . 6 ℂ ∈ {𝐴, ℂ}
10 eqid 2621 . . . . . . . 8 {𝐴, ℂ} = {𝐴, ℂ}
1110olci 406 . . . . . . 7 ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})
12 elopg 4905 . . . . . . . 8 ((𝐴 ∈ V ∧ ℂ ∈ V) → ({𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ↔ ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})))
138, 12mpan2 706 . . . . . . 7 (𝐴 ∈ V → ({𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ↔ ({𝐴, ℂ} = {𝐴} ∨ {𝐴, ℂ} = {𝐴, ℂ})))
1411, 13mpbiri 248 . . . . . 6 (𝐴 ∈ V → {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩)
15 en3lp 8473 . . . . . . 7 ¬ (ℂ ∈ {𝐴, ℂ} ∧ {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩ ∧ ⟨𝐴, ℂ⟩ ∈ ℂ)
1615bj-imn3ani 32267 . . . . . 6 ((ℂ ∈ {𝐴, ℂ} ∧ {𝐴, ℂ} ∈ ⟨𝐴, ℂ⟩) → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
179, 14, 16sylancr 694 . . . . 5 (𝐴 ∈ V → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
18 opprc1 4400 . . . . . 6 𝐴 ∈ V → ⟨𝐴, ℂ⟩ = ∅)
19 0ncn 9914 . . . . . . 7 ¬ ∅ ∈ ℂ
20 eleq1 2686 . . . . . . 7 (⟨𝐴, ℂ⟩ = ∅ → (⟨𝐴, ℂ⟩ ∈ ℂ ↔ ∅ ∈ ℂ))
2119, 20mtbiri 317 . . . . . 6 (⟨𝐴, ℂ⟩ = ∅ → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
2218, 21syl 17 . . . . 5 𝐴 ∈ V → ¬ ⟨𝐴, ℂ⟩ ∈ ℂ)
2317, 22pm2.61i 176 . . . 4 ¬ ⟨𝐴, ℂ⟩ ∈ ℂ
24 eqcom 2628 . . . . . 6 ((inftyexpi ‘𝐴) = ⟨𝐴, ℂ⟩ ↔ ⟨𝐴, ℂ⟩ = (inftyexpi ‘𝐴))
2524biimpi 206 . . . . 5 ((inftyexpi ‘𝐴) = ⟨𝐴, ℂ⟩ → ⟨𝐴, ℂ⟩ = (inftyexpi ‘𝐴))
2625eleq1d 2683 . . . 4 ((inftyexpi ‘𝐴) = ⟨𝐴, ℂ⟩ → (⟨𝐴, ℂ⟩ ∈ ℂ ↔ (inftyexpi ‘𝐴) ∈ ℂ))
2723, 26mtbii 316 . . 3 ((inftyexpi ‘𝐴) = ⟨𝐴, ℂ⟩ → ¬ (inftyexpi ‘𝐴) ∈ ℂ)
287, 27syl 17 . 2 (𝐴 ∈ dom inftyexpi → ¬ (inftyexpi ‘𝐴) ∈ ℂ)
29 ndmfv 6185 . . . 4 𝐴 ∈ dom inftyexpi → (inftyexpi ‘𝐴) = ∅)
3029eleq1d 2683 . . 3 𝐴 ∈ dom inftyexpi → ((inftyexpi ‘𝐴) ∈ ℂ ↔ ∅ ∈ ℂ))
3119, 30mtbiri 317 . 2 𝐴 ∈ dom inftyexpi → ¬ (inftyexpi ‘𝐴) ∈ ℂ)
3228, 31pm2.61i 176 1 ¬ (inftyexpi ‘𝐴) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 383   = wceq 1480  wcel 1987  Vcvv 3190  c0 3897  {csn 4155  {cpr 4157  cop 4161  dom cdm 5084  cfv 5857  (class class class)co 6615  cc 9894  -cneg 10227  (,]cioc 12134  πcpi 14741  inftyexpi cinftyexpi 32765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-reg 8457  ax-cnex 9952
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-iota 5820  df-fun 5859  df-fn 5860  df-fv 5865  df-c 9902  df-bj-inftyexpi 32766
This theorem is referenced by:  bj-ccinftydisj  32772  bj-pinftynrr  32781  bj-minftynrr  32785
  Copyright terms: Public domain W3C validator