Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-finsumval0 Structured version   Visualization version   GIF version

Theorem bj-finsumval0 33484
Description: Value of a finite sum. (Contributed by BJ, 9-Jun-2019.) (Proof shortened by AV, 5-May-2021.)
Hypotheses
Ref Expression
bj-finsumval0.1 (𝜑𝐴 ∈ CMnd)
bj-finsumval0.2 (𝜑𝐼 ∈ Fin)
bj-finsumval0.3 (𝜑𝐵:𝐼⟶(Base‘𝐴))
Assertion
Ref Expression
bj-finsumval0 (𝜑 → (𝐴 FinSum 𝐵) = (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
Distinct variable groups:   𝐴,𝑠,𝑓,𝑚,𝑛   𝐵,𝑓,𝑚,𝑛,𝑠   𝑓,𝐼,𝑛   𝜑,𝑓,𝑚,𝑠
Allowed substitution hints:   𝜑(𝑛)   𝐼(𝑚,𝑠)

Proof of Theorem bj-finsumval0
Dummy variables 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6796 . 2 (𝐴 FinSum 𝐵) = ( FinSum ‘⟨𝐴, 𝐵⟩)
2 df-bj-finsum 33483 . . . 4 FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
32a1i 11 . . 3 (𝜑 → FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))))
4 simpr 471 . . . . . . . . . 10 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → 𝑥 = ⟨𝐴, 𝐵⟩)
54fveq2d 6336 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
6 bj-finsumval0.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ CMnd)
76adantr 466 . . . . . . . . . 10 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → 𝐴 ∈ CMnd)
8 bj-finsumval0.3 . . . . . . . . . . . 12 (𝜑𝐵:𝐼⟶(Base‘𝐴))
9 bj-finsumval0.2 . . . . . . . . . . . 12 (𝜑𝐼 ∈ Fin)
10 fex 6633 . . . . . . . . . . . 12 ((𝐵:𝐼⟶(Base‘𝐴) ∧ 𝐼 ∈ Fin) → 𝐵 ∈ V)
118, 9, 10syl2anc 573 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
1211adantr 466 . . . . . . . . . 10 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → 𝐵 ∈ V)
13 op1stg 7327 . . . . . . . . . 10 ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
147, 12, 13syl2anc 573 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
155, 14eqtrd 2805 . . . . . . . 8 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (1st𝑥) = 𝐴)
164fveq2d 6336 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
17 op2ndg 7328 . . . . . . . . . 10 ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
187, 12, 17syl2anc 573 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1916, 18eqtrd 2805 . . . . . . . 8 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (2nd𝑥) = 𝐵)
2019dmeqd 5464 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → dom (2nd𝑥) = dom 𝐵)
21 fdm 6191 . . . . . . . . . . 11 (𝐵:𝐼⟶(Base‘𝐴) → dom 𝐵 = 𝐼)
228, 21syl 17 . . . . . . . . . 10 (𝜑 → dom 𝐵 = 𝐼)
2322adantr 466 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → dom 𝐵 = 𝐼)
2420, 23eqtrd 2805 . . . . . . . 8 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → dom (2nd𝑥) = 𝐼)
25 f1oeq3 6270 . . . . . . . . . . . . . . 15 (dom (2nd𝑥) = 𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ↔ 𝑓:(1...𝑚)–1-1-onto𝐼))
2625biimpd 219 . . . . . . . . . . . . . 14 (dom (2nd𝑥) = 𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) → 𝑓:(1...𝑚)–1-1-onto𝐼))
2726ad2antll 708 . . . . . . . . . . . . 13 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) → 𝑓:(1...𝑚)–1-1-onto𝐼))
2827adantrd 479 . . . . . . . . . . . 12 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto𝐼))
2928adantr 466 . . . . . . . . . . 11 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto𝐼))
30 eqidd 2772 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 = 1)
31 simprl 754 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → (1st𝑥) = 𝐴)
3231fveq2d 6336 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → (+g‘(1st𝑥)) = (+g𝐴))
3332adantrr 696 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (+g‘(1st𝑥)) = (+g𝐴))
34 simprrl 766 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → (2nd𝑥) = 𝐵)
3534adantr 466 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (2nd𝑥) = 𝐵)
3635fveq1d 6334 . . . . . . . . . . . . . . . . . . 19 (((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → ((2nd𝑥)‘(𝑓𝑛)) = (𝐵‘(𝑓𝑛)))
3736mpteq2dva 4878 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))
3837adantrr 696 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))
3930, 33, 38seqeq123d 13017 . . . . . . . . . . . . . . . 16 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛)))) = seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛)))))
40 simpr 471 . . . . . . . . . . . . . . . . . 18 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
41 simprr 756 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → dom (2nd𝑥) = 𝐼)
4241adantr 466 . . . . . . . . . . . . . . . . . 18 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → dom (2nd𝑥) = 𝐼)
4340, 42jca 501 . . . . . . . . . . . . . . . . 17 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼))
44 hashfz1 13338 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ0 → (♯‘(1...𝑚)) = 𝑚)
4544eqcomd 2777 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ0𝑚 = (♯‘(1...𝑚)))
4645ad2antrl 707 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → 𝑚 = (♯‘(1...𝑚)))
47 fzfid 12980 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → (1...𝑚) ∈ Fin)
48 19.8a 2206 . . . . . . . . . . . . . . . . . . . 20 (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) → ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥))
4948adantr 466 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥))
50 hasheqf1oi 13344 . . . . . . . . . . . . . . . . . . 19 ((1...𝑚) ∈ Fin → (∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) → (♯‘(1...𝑚)) = (♯‘dom (2nd𝑥))))
5147, 49, 50sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → (♯‘(1...𝑚)) = (♯‘dom (2nd𝑥)))
52 simprr 756 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → dom (2nd𝑥) = 𝐼)
5352fveq2d 6336 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → (♯‘dom (2nd𝑥)) = (♯‘𝐼))
5446, 51, 533eqtrd 2809 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → 𝑚 = (♯‘𝐼))
5543, 54sylan2 580 . . . . . . . . . . . . . . . 16 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (♯‘𝐼))
5639, 55fveq12d 6338 . . . . . . . . . . . . . . 15 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚) = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))
5756eqeq2d 2781 . . . . . . . . . . . . . 14 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚) ↔ 𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))))
5857biimpd 219 . . . . . . . . . . . . 13 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚) → 𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))))
5958impancom 439 . . . . . . . . . . . 12 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))))
6059com12 32 . . . . . . . . . . 11 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → 𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))))
6129, 60jcad 502 . . . . . . . . . 10 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
6225biimprd 238 . . . . . . . . . . . . . 14 (dom (2nd𝑥) = 𝐼 → (𝑓:(1...𝑚)–1-1-onto𝐼𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)))
6362ad2antll 708 . . . . . . . . . . . . 13 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto𝐼𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)))
6463adantr 466 . . . . . . . . . . . 12 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑓:(1...𝑚)–1-1-onto𝐼𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)))
6564adantrd 479 . . . . . . . . . . 11 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))) → 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)))
66 eqidd 2772 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 = 1)
67 simpl 468 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → (1st𝑥) = 𝐴)
68 tru 1635 . . . . . . . . . . . . . . . . . . . . 21
6967, 68jctir 510 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → ((1st𝑥) = 𝐴 ∧ ⊤))
7069ad2antrl 707 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → ((1st𝑥) = 𝐴 ∧ ⊤))
71 simpl 468 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑥) = 𝐴 ∧ ⊤) → (1st𝑥) = 𝐴)
7271eqcomd 2777 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) = 𝐴 ∧ ⊤) → 𝐴 = (1st𝑥))
7370, 72syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝐴 = (1st𝑥))
7473fveq2d 6336 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (+g𝐴) = (+g‘(1st𝑥)))
75 simpl 468 . . . . . . . . . . . . . . . . . . . . . . 23 (((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼) → (2nd𝑥) = 𝐵)
7675eqcomd 2777 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼) → 𝐵 = (2nd𝑥))
7776ad2antll 708 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → 𝐵 = (2nd𝑥))
7877adantr 466 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → 𝐵 = (2nd𝑥))
7978fveq1d 6334 . . . . . . . . . . . . . . . . . . 19 (((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓𝑛)) = ((2nd𝑥)‘(𝑓𝑛)))
8079adantlrr 700 . . . . . . . . . . . . . . . . . 18 (((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓𝑛)) = ((2nd𝑥)‘(𝑓𝑛)))
8180mpteq2dva 4878 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))
8266, 74, 81seqeq123d 13017 . . . . . . . . . . . . . . . 16 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛)))) = seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛)))))
8364impcom 394 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥))
84 simprr 756 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
8541ad2antrl 707 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → dom (2nd𝑥) = 𝐼)
8683, 84, 85, 54syl12anc 1474 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (♯‘𝐼))
8786eqcomd 2777 . . . . . . . . . . . . . . . 16 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (♯‘𝐼) = 𝑚)
8882, 87fveq12d 6338 . . . . . . . . . . . . . . 15 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)) = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))
8988eqeq2d 2781 . . . . . . . . . . . . . 14 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)) ↔ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
9089biimpd 219 . . . . . . . . . . . . 13 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)) → 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
9190impancom 439 . . . . . . . . . . . 12 ((𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))) → ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
9291com12 32 . . . . . . . . . . 11 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))) → 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
9365, 92jcad 502 . . . . . . . . . 10 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))) → (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
9461, 93impbid 202 . . . . . . . . 9 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
9594ex 397 . . . . . . . 8 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))))))
9615, 19, 24, 95syl12anc 1474 . . . . . . 7 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))))))
9796imp 393 . . . . . 6 (((𝜑𝑥 = ⟨𝐴, 𝐵⟩) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
9897exbidv 2002 . . . . 5 (((𝜑𝑥 = ⟨𝐴, 𝐵⟩) ∧ 𝑚 ∈ ℕ0) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
9998rexbidva 3197 . . . 4 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (∃𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ ∃𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
10099iotabidv 6015 . . 3 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))) = (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
101 eleq1 2838 . . . . . . . . . 10 (𝑡 = 𝐼 → (𝑡 ∈ Fin ↔ 𝐼 ∈ Fin))
102 feq2 6167 . . . . . . . . . 10 (𝑡 = 𝐼 → (𝐵:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝐼⟶(Base‘𝐴)))
103101, 102anbi12d 616 . . . . . . . . 9 (𝑡 = 𝐼 → ((𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴))))
104103ceqsexgv 3485 . . . . . . . 8 (𝐼 ∈ Fin → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴))))
1059, 104syl 17 . . . . . . 7 (𝜑 → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴))))
1069, 8, 105mpbir2and 692 . . . . . 6 (𝜑 → ∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))))
107 exsimpr 1947 . . . . . 6 (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))
108106, 107syl 17 . . . . 5 (𝜑 → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))
109 df-rex 3067 . . . . 5 (∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴) ↔ ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))
110108, 109sylibr 224 . . . 4 (𝜑 → ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))
111 eleq1 2838 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 ∈ CMnd ↔ 𝐴 ∈ CMnd))
112 fveq2 6332 . . . . . . . . 9 (𝑦 = 𝐴 → (Base‘𝑦) = (Base‘𝐴))
113112feq3d 6172 . . . . . . . 8 (𝑦 = 𝐴 → (𝑧:𝑡⟶(Base‘𝑦) ↔ 𝑧:𝑡⟶(Base‘𝐴)))
114113rexbidv 3200 . . . . . . 7 (𝑦 = 𝐴 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦) ↔ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)))
115111, 114anbi12d 616 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴))))
116 feq1 6166 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝑡⟶(Base‘𝐴)))
117116rexbidv 3200 . . . . . . 7 (𝑧 = 𝐵 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴) ↔ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))
118117anbi2d 614 . . . . . 6 (𝑧 = 𝐵 → ((𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))))
119115, 118opelopabg 5126 . . . . 5 ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))))
1206, 11, 119syl2anc 573 . . . 4 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))))
1216, 110, 120mpbir2and 692 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))})
122 iotaex 6011 . . . 4 (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))) ∈ V
123122a1i 11 . . 3 (𝜑 → (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))) ∈ V)
1243, 100, 121, 123fvmptd 6430 . 2 (𝜑 → ( FinSum ‘⟨𝐴, 𝐵⟩) = (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
1251, 124syl5eq 2817 1 (𝜑 → (𝐴 FinSum 𝐵) = (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wtru 1632  wex 1852  wcel 2145  wrex 3062  Vcvv 3351  cop 4322  {copab 4846  cmpt 4863  dom cdm 5249  cio 5992  wf 6027  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6793  1st c1st 7313  2nd c2nd 7314  Fincfn 8109  1c1 10139  cn 11222  0cn0 11494  ...cfz 12533  seqcseq 13008  chash 13321  Basecbs 16064  +gcplusg 16149  CMndccmn 18400   FinSum cfinsum 33482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-seq 13009  df-hash 13322  df-bj-finsum 33483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator