![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-exlimh | Structured version Visualization version GIF version |
Description: Closed form of close to exlimih 2312. (Contributed by BJ, 2-May-2019.) |
Ref | Expression |
---|---|
bj-exlimh | ⊢ (∀𝑥(𝜑 → 𝜓) → ((∃𝑥𝜓 → 𝜒) → (∃𝑥𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1908 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | 1 | imim1d 82 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → ((∃𝑥𝜓 → 𝜒) → (∃𝑥𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1628 ∃wex 1851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 |
This theorem depends on definitions: df-bi 197 df-ex 1852 |
This theorem is referenced by: bj-exlimh2 32934 |
Copyright terms: Public domain | W3C validator |