Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dvdemo2 Structured version   Visualization version   GIF version

Theorem bj-dvdemo2 32499
Description: Remove dependency on ax-13 2245 from dvdemo2 4874 (this removal is noteworthy since dvdemo1 4873 and dvdemo2 4874 illustrate the phenomenon of bundling). (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-dvdemo2 𝑥(𝑥 = 𝑦𝑧𝑥)
Distinct variable group:   𝑥,𝑧

Proof of Theorem bj-dvdemo2
StepHypRef Expression
1 bj-el 32492 . 2 𝑥 𝑧𝑥
2 ax-1 6 . 2 (𝑧𝑥 → (𝑥 = 𝑦𝑧𝑥))
31, 2eximii 1761 1 𝑥(𝑥 = 𝑦𝑧𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-pow 4813
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702  df-nf 1707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator