Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dvdemo1 Structured version   Visualization version   GIF version

Theorem bj-dvdemo1 33138
 Description: Remove dependency on ax-13 2408 from dvdemo1 5030 (this removal is noteworthy since dvdemo1 5030 and dvdemo2 5031 illustrate the phenomenon of bundling). (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-dvdemo1 𝑥(𝑥 = 𝑦𝑧𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-dvdemo1
StepHypRef Expression
1 bj-dtru 33133 . . 3 ¬ ∀𝑥 𝑥 = 𝑦
2 exnal 1902 . . 3 (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
31, 2mpbir 221 . 2 𝑥 ¬ 𝑥 = 𝑦
4 pm2.21 121 . 2 𝑥 = 𝑦 → (𝑥 = 𝑦𝑧𝑥))
53, 4eximii 1912 1 𝑥(𝑥 = 𝑦𝑧𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1629  ∃wex 1852 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-nul 4923  ax-pow 4974 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-tru 1634  df-ex 1853  df-nf 1858 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator