Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dtrucor Structured version   Visualization version   GIF version

Theorem bj-dtrucor 33136
 Description: Remove dependency on ax-13 2408 from dtrucor 5028. (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-dtrucor.1 𝑥 = 𝑦
Assertion
Ref Expression
bj-dtrucor 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-dtrucor
StepHypRef Expression
1 bj-dtru 33133 . . 3 ¬ ∀𝑥 𝑥 = 𝑦
21pm2.21i 117 . 2 (∀𝑥 𝑥 = 𝑦𝑥𝑦)
3 bj-dtrucor.1 . 2 𝑥 = 𝑦
42, 3mpg 1872 1 𝑥𝑦
 Colors of variables: wff setvar class Syntax hints:  ∀wal 1629   ≠ wne 2943 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-nul 4923  ax-pow 4974 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator