Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-drnf2v Structured version   Visualization version   GIF version

Theorem bj-drnf2v 33087
 Description: Version of drnf2 2480 with a dv condition, which does not require ax-13 2408. Could be labeled "nfbidv". Note that the version of axc15 2459 with a dv condition is actually ax12v2 2205 (up to adding a superfluous antecedent). (Contributed by BJ, 17-Jun-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-drnf2v.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-drnf2v (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem bj-drnf2v
StepHypRef Expression
1 nfv 1995 . 2 𝑧𝑥 𝑥 = 𝑦
2 bj-drnf2v.1 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
31, 2nfbidf 2248 1 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1629  Ⅎwnf 1856 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-12 2203 This theorem depends on definitions:  df-bi 197  df-ex 1853  df-nf 1858 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator