![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-discrmoore | Structured version Visualization version GIF version |
Description: The discrete Moore collection on a set. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-discrmoore | ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ Moore) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4999 | . . 3 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
2 | unipw 5067 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
3 | 2 | ineq1i 3953 | . . . . 5 ⊢ (∪ 𝒫 𝐴 ∩ ∩ 𝑥) = (𝐴 ∩ ∩ 𝑥) |
4 | inex1g 4953 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ∈ V) | |
5 | inss1 3976 | . . . . . . 7 ⊢ (𝐴 ∩ ∩ 𝑥) ⊆ 𝐴 | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ⊆ 𝐴) |
7 | 4, 6 | elpwd 4311 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
8 | 3, 7 | syl5eqel 2843 | . . . 4 ⊢ (𝐴 ∈ V → (∪ 𝒫 𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
9 | 8 | adantr 472 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑥 ⊆ 𝒫 𝐴) → (∪ 𝒫 𝐴 ∩ ∩ 𝑥) ∈ 𝒫 𝐴) |
10 | 1, 9 | bj-ismooredr 33388 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ Moore) |
11 | pwexr 7140 | . 2 ⊢ (𝒫 𝐴 ∈ Moore → 𝐴 ∈ V) | |
12 | 10, 11 | impbii 199 | 1 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ Moore) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2139 Vcvv 3340 ∩ cin 3714 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 ∩ cint 4627 Moorecmoore 33381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-pw 4304 df-sn 4322 df-pr 4324 df-uni 4589 df-bj-moore 33382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |