![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dfssb2 | Structured version Visualization version GIF version |
Description: An alternate definition of df-ssb 32958. Note that the use of a dummy variable in the definition df-ssb 32958 allows to use bj-sb56 32976 instead of equs45f 2496 and hence to avoid dependency on ax-13 2408 and to use ax-12 2203 only through bj-ax12 32972. Compare dfsb7 2603. (Contributed by BJ, 25-Dec-2020.) |
Ref | Expression |
---|---|
bj-dfssb2 | ⊢ ([𝑡/𝑥]b𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ssb 32958 | . 2 ⊢ ([𝑡/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
2 | bj-sb56 32976 | . 2 ⊢ (∃𝑦(𝑦 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
3 | bj-sb56 32976 | . . . . 5 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
4 | 3 | bicomi 214 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
5 | 4 | anbi2i 609 | . . 3 ⊢ ((𝑦 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
6 | 5 | exbii 1924 | . 2 ⊢ (∃𝑦(𝑦 = 𝑡 ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
7 | 1, 2, 6 | 3bitr2i 288 | 1 ⊢ ([𝑡/𝑥]b𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∀wal 1629 ∃wex 1852 [wssb 32957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-10 2174 ax-12 2203 |
This theorem depends on definitions: df-bi 197 df-an 383 df-ex 1853 df-ssb 32958 |
This theorem is referenced by: bj-ssbn 32978 |
Copyright terms: Public domain | W3C validator |