![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-csbsn | Structured version Visualization version GIF version |
Description: Substitution in a singleton. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-csbsn | ⊢ ⦋𝐴 / 𝑥⦌{𝑥} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-csbsnlem 33221 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌{𝑥} = {𝑦} | |
2 | 1 | csbeq2i 4137 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌{𝑥} = ⦋𝐴 / 𝑦⦌{𝑦} |
3 | csbco 3685 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌{𝑥} = ⦋𝐴 / 𝑥⦌{𝑥} | |
4 | bj-csbsnlem 33221 | . 2 ⊢ ⦋𝐴 / 𝑦⦌{𝑦} = {𝐴} | |
5 | 2, 3, 4 | 3eqtr3i 2791 | 1 ⊢ ⦋𝐴 / 𝑥⦌{𝑥} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ⦋csb 3675 {csn 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-v 3343 df-sbc 3578 df-csb 3676 df-sn 4323 |
This theorem is referenced by: bj-snsetex 33276 |
Copyright terms: Public domain | W3C validator |