![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cleljustab | Structured version Visualization version GIF version |
Description: An instance of df-clel 2767 where the LHS (the definiendum) has the form "setvar ∈ class abstraction". The straightforward yet important fact that this statement can be proved from FOL= and df-clab 2758 (hence without df-clel 2767 or df-cleq 2764) was stressed by Mario Carneiro. The instance of df-clel 2767 where the LHS has the form "setvar ∈ setvar" is proved as cleljust 2153, from FOL= and ax-8 2147. Note: when df-ssb 32958 is the official definition for substitution, one can use bj-ssbequ 32967 instead of sbequ 2523 to prove bj-cleljustab 33181 from Tarski's FOL= with df-clab 2758. (Contributed by BJ, 8-Nov-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-cleljustab | ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ {𝑦 ∣ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2758 | . 2 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) | |
2 | ax6ev 2059 | . . . 4 ⊢ ∃𝑧 𝑧 = 𝑥 | |
3 | 2 | biantrur 520 | . . 3 ⊢ ([𝑥 / 𝑦]𝜑 ↔ (∃𝑧 𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑)) |
4 | 19.41v 2029 | . . . 4 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑) ↔ (∃𝑧 𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑)) | |
5 | 4 | bicomi 214 | . . 3 ⊢ ((∃𝑧 𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑) ↔ ∃𝑧(𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑)) |
6 | sbequ 2523 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑)) | |
7 | 6 | equcoms 2105 | . . . . 5 ⊢ (𝑧 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑)) |
8 | 7 | pm5.32i 564 | . . . 4 ⊢ ((𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑) ↔ (𝑧 = 𝑥 ∧ [𝑧 / 𝑦]𝜑)) |
9 | 8 | exbii 1924 | . . 3 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ [𝑥 / 𝑦]𝜑) ↔ ∃𝑧(𝑧 = 𝑥 ∧ [𝑧 / 𝑦]𝜑)) |
10 | 3, 5, 9 | 3bitri 286 | . 2 ⊢ ([𝑥 / 𝑦]𝜑 ↔ ∃𝑧(𝑧 = 𝑥 ∧ [𝑧 / 𝑦]𝜑)) |
11 | df-clab 2758 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
12 | 11 | bicomi 214 | . . . 4 ⊢ ([𝑧 / 𝑦]𝜑 ↔ 𝑧 ∈ {𝑦 ∣ 𝜑}) |
13 | 12 | anbi2i 609 | . . 3 ⊢ ((𝑧 = 𝑥 ∧ [𝑧 / 𝑦]𝜑) ↔ (𝑧 = 𝑥 ∧ 𝑧 ∈ {𝑦 ∣ 𝜑})) |
14 | 13 | exbii 1924 | . 2 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ [𝑧 / 𝑦]𝜑) ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ {𝑦 ∣ 𝜑})) |
15 | 1, 10, 14 | 3bitri 286 | 1 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ {𝑦 ∣ 𝜑})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∃wex 1852 [wsb 2049 ∈ wcel 2145 {cab 2757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-10 2174 ax-12 2203 ax-13 2408 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |