![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ccssccbar | Structured version Visualization version GIF version |
Description: Complex numbers are extended complex numbers. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
bj-ccssccbar | ⊢ ℂ ⊆ ℂ̅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3919 | . 2 ⊢ ℂ ⊆ (ℂ ∪ ℂ∞) | |
2 | df-bj-ccbar 33432 | . 2 ⊢ ℂ̅ = (ℂ ∪ ℂ∞) | |
3 | 1, 2 | sseqtr4i 3779 | 1 ⊢ ℂ ⊆ ℂ̅ |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3713 ⊆ wss 3715 ℂcc 10146 ℂ∞cccinfty 33427 ℂ̅cccbar 33431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-un 3720 df-in 3722 df-ss 3729 df-bj-ccbar 33432 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |