Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axc16g16 Structured version   Visualization version   GIF version

Theorem bj-axc16g16 32649
Description: Proof of axc16g 2132 from { ax-1 6-- ax-7 1933, axc16 2133 }. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axc16g16 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem bj-axc16g16
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 aevlem 1979 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑡)
2 axc16 2133 . 2 (∀𝑧 𝑧 = 𝑡 → (𝜑 → ∀𝑧𝜑))
31, 2syl 17 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-12 2045
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator