Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axc10 Structured version   Visualization version   GIF version

Theorem bj-axc10 32832
Description: Alternate (shorter) proof of axc10 2288. One can prove a version with DV(x,y) without ax-13 2282, by using ax6ev 1947 instead of ax6e 2286. (Contributed by BJ, 31-Mar-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axc10 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)

Proof of Theorem bj-axc10
StepHypRef Expression
1 ax6e 2286 . . 3 𝑥 𝑥 = 𝑦
2 exim 1801 . . 3 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥𝑥𝜑))
31, 2mpi 20 . 2 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → ∃𝑥𝑥𝜑)
4 axc7e 2171 . 2 (∃𝑥𝑥𝜑𝜑)
53, 4syl 17 1 (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1521  wex 1744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087  ax-13 2282
This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator