![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ax89 | Structured version Visualization version GIF version |
Description: A theorem which could be used as sole axiom for the non-logical predicate instead of ax-8 2032 and ax-9 2039. Indeed, it is implied over propositional calculus by the conjunction of ax-8 2032 and ax-9 2039, as proved here. In the other direction, one can prove ax-8 2032 (respectively ax-9 2039) from bj-ax89 32792 by using mpan2 707 ( respectively mpan 706) and equid 1985. (TODO: move to main part.) (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bj-ax89 | ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑡)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax8 2036 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
2 | ax9 2043 | . 2 ⊢ (𝑧 = 𝑡 → (𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑡)) | |
3 | 1, 2 | sylan9 690 | 1 ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑡)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |