Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-andnotim Structured version   Visualization version   GIF version

Theorem bj-andnotim 32548
Description: Two ways of expressing a certain ternary connective. Note the respective positions of the three formulas on each side of the biconditional. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-andnotim (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))

Proof of Theorem bj-andnotim
StepHypRef Expression
1 imor 428 . . 3 (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ (¬ (𝜑 ∧ ¬ 𝜓) ∨ 𝜒))
2 iman 440 . . . . 5 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
32biimpri 218 . . . 4 (¬ (𝜑 ∧ ¬ 𝜓) → (𝜑𝜓))
43orim1i 539 . . 3 ((¬ (𝜑 ∧ ¬ 𝜓) ∨ 𝜒) → ((𝜑𝜓) ∨ 𝜒))
51, 4sylbi 207 . 2 (((𝜑 ∧ ¬ 𝜓) → 𝜒) → ((𝜑𝜓) ∨ 𝜒))
6 pm2.24 121 . . . . 5 (𝜓 → (¬ 𝜓𝜒))
76imim2i 16 . . . 4 ((𝜑𝜓) → (𝜑 → (¬ 𝜓𝜒)))
87impd 447 . . 3 ((𝜑𝜓) → ((𝜑 ∧ ¬ 𝜓) → 𝜒))
9 ax-1 6 . . 3 (𝜒 → ((𝜑 ∧ ¬ 𝜓) → 𝜒))
108, 9jaoi 394 . 2 (((𝜑𝜓) ∨ 𝜒) → ((𝜑 ∧ ¬ 𝜓) → 𝜒))
115, 10impbii 199 1 (((𝜑 ∧ ¬ 𝜓) → 𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator