Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-abeq2 Structured version   Visualization version   GIF version

Theorem bj-abeq2 32898
 Description: Remove dependency on ax-13 2282 from abeq2 2761. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-abeq2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-abeq2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-5 1879 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
2 bj-hbab1 32896 . . 3 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
31, 2cleqh 2753 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}))
4 abid 2639 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
54bibi2i 326 . . 3 ((𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ (𝑥𝐴𝜑))
65albii 1787 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ ∀𝑥(𝑥𝐴𝜑))
73, 6bitri 264 1 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196  ∀wal 1521   = wceq 1523   ∈ wcel 2030  {cab 2637 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647 This theorem is referenced by:  bj-abeq1  32899  bj-abbi2i  32901  bj-abbi2dv  32905  bj-clabel  32908  bj-ru1  33058
 Copyright terms: Public domain W3C validator