![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-2upleq | Structured version Visualization version GIF version |
Description: Substitution property for ⦅ − , − ⦆. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-2upleq | ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-1upleq 33112 | . . 3 ⊢ (𝐴 = 𝐵 → ⦅𝐴⦆ = ⦅𝐵⦆) | |
2 | bj-xtageq 33101 | . . 3 ⊢ (𝐶 = 𝐷 → ({1𝑜} × tag 𝐶) = ({1𝑜} × tag 𝐷)) | |
3 | uneq12 3795 | . . . 4 ⊢ ((⦅𝐴⦆ = ⦅𝐵⦆ ∧ ({1𝑜} × tag 𝐶) = ({1𝑜} × tag 𝐷)) → (⦅𝐴⦆ ∪ ({1𝑜} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1𝑜} × tag 𝐷))) | |
4 | 3 | ex 449 | . . 3 ⊢ (⦅𝐴⦆ = ⦅𝐵⦆ → (({1𝑜} × tag 𝐶) = ({1𝑜} × tag 𝐷) → (⦅𝐴⦆ ∪ ({1𝑜} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1𝑜} × tag 𝐷)))) |
5 | 1, 2, 4 | syl2im 40 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → (⦅𝐴⦆ ∪ ({1𝑜} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1𝑜} × tag 𝐷)))) |
6 | df-bj-2upl 33124 | . . 3 ⊢ ⦅𝐴, 𝐶⦆ = (⦅𝐴⦆ ∪ ({1𝑜} × tag 𝐶)) | |
7 | df-bj-2upl 33124 | . . 3 ⊢ ⦅𝐵, 𝐷⦆ = (⦅𝐵⦆ ∪ ({1𝑜} × tag 𝐷)) | |
8 | 6, 7 | eqeq12i 2665 | . 2 ⊢ (⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆ ↔ (⦅𝐴⦆ ∪ ({1𝑜} × tag 𝐶)) = (⦅𝐵⦆ ∪ ({1𝑜} × tag 𝐷))) |
9 | 5, 8 | syl6ibr 242 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 = 𝐷 → ⦅𝐴, 𝐶⦆ = ⦅𝐵, 𝐷⦆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∪ cun 3605 {csn 4210 × cxp 5141 1𝑜c1o 7598 tag bj-ctag 33087 ⦅bj-c1upl 33110 ⦅bj-c2uple 33123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-v 3233 df-un 3612 df-opab 4746 df-xp 5149 df-bj-sngl 33079 df-bj-tag 33088 df-bj-1upl 33111 df-bj-2upl 33124 |
This theorem is referenced by: bj-2uplth 33134 |
Copyright terms: Public domain | W3C validator |