![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nelsngl | Structured version Visualization version GIF version |
Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o 7605). (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-0nelsngl | ⊢ ∅ ∉ sngl 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3234 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | snnz 4340 | . . . . 5 ⊢ {𝑥} ≠ ∅ |
3 | 2 | nesymi 2880 | . . . 4 ⊢ ¬ ∅ = {𝑥} |
4 | 3 | nex 1771 | . . 3 ⊢ ¬ ∃𝑥∅ = {𝑥} |
5 | bj-elsngl 33081 | . . . 4 ⊢ (∅ ∈ sngl 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∅ = {𝑥}) | |
6 | rexex 3031 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∅ = {𝑥} → ∃𝑥∅ = {𝑥}) | |
7 | 5, 6 | sylbi 207 | . . 3 ⊢ (∅ ∈ sngl 𝐴 → ∃𝑥∅ = {𝑥}) |
8 | 4, 7 | mto 188 | . 2 ⊢ ¬ ∅ ∈ sngl 𝐴 |
9 | 8 | nelir 2929 | 1 ⊢ ∅ ∉ sngl 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∃wex 1744 ∈ wcel 2030 ∉ wnel 2926 ∃wrex 2942 ∅c0 3948 {csn 4210 sngl bj-csngl 33078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-v 3233 df-dif 3610 df-un 3612 df-nul 3949 df-sn 4211 df-pr 4213 df-bj-sngl 33079 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |