Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nelmpt Structured version   Visualization version   GIF version

Theorem bj-0nelmpt 33296
Description: The empty set is not an element of a function (given in maps-to notation). (Contributed by BJ, 30-Dec-2020.)
Assertion
Ref Expression
bj-0nelmpt ¬ ∅ ∈ (𝑥𝐴𝐵)

Proof of Theorem bj-0nelmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0neqopab 6815 . 2 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
2 df-mpt 4838 . . . 4 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
32eqcomi 2733 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = (𝑥𝐴𝐵)
43eleq2i 2795 . 2 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↔ ∅ ∈ (𝑥𝐴𝐵))
51, 4mtbi 311 1 ¬ ∅ ∈ (𝑥𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1596  wcel 2103  c0 4023  {copab 4820  cmpt 4837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pr 5011
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-v 3306  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-opab 4821  df-mpt 4838
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator