Proof of Theorem bj-0int
Step | Hyp | Ref
| Expression |
1 | | ssv 3762 |
. . . . . . . . 9
⊢ 𝑋 ⊆ V |
2 | | int0 4638 |
. . . . . . . . 9
⊢ ∩ ∅ = V |
3 | 1, 2 | sseqtr4i 3775 |
. . . . . . . 8
⊢ 𝑋 ⊆ ∩ ∅ |
4 | | df-ss 3725 |
. . . . . . . 8
⊢ (𝑋 ⊆ ∩ ∅ ↔ (𝑋 ∩ ∩ ∅)
= 𝑋) |
5 | 3, 4 | mpbi 220 |
. . . . . . 7
⊢ (𝑋 ∩ ∩ ∅) = 𝑋 |
6 | 5 | eqcomi 2765 |
. . . . . 6
⊢ 𝑋 = (𝑋 ∩ ∩
∅) |
7 | 6 | eleq1i 2826 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 ↔ (𝑋 ∩ ∩ ∅)
∈ 𝐵) |
8 | 7 | a1i 11 |
. . . 4
⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝑋 ∈ 𝐵 ↔ (𝑋 ∩ ∩ ∅)
∈ 𝐵)) |
9 | | eldifsn 4458 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔
(𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅)) |
10 | | sstr2 3747 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ 𝒫 𝑋 → 𝑥 ⊆ 𝒫 𝑋)) |
11 | | bj-intss 33355 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝒫 𝑋 → (𝑥 ≠ ∅ → ∩ 𝑥
⊆ 𝑋)) |
12 | 10, 11 | syl6 35 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ≠ ∅ → ∩ 𝑥
⊆ 𝑋))) |
13 | | elpwi 4308 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) |
14 | 12, 13 | syl11 33 |
. . . . . . . . 9
⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ∈ 𝒫 𝐴 → (𝑥 ≠ ∅ → ∩ 𝑥
⊆ 𝑋))) |
15 | 14 | impd 446 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝒫 𝑋 → ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅) → ∩ 𝑥
⊆ 𝑋)) |
16 | 9, 15 | syl5bi 232 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ∩ 𝑥
⊆ 𝑋)) |
17 | | df-ss 3725 |
. . . . . . . . 9
⊢ (∩ 𝑥
⊆ 𝑋 ↔ (∩ 𝑥
∩ 𝑋) = ∩ 𝑥) |
18 | | incom 3944 |
. . . . . . . . . . 11
⊢ (∩ 𝑥
∩ 𝑋) = (𝑋 ∩ ∩ 𝑥) |
19 | 18 | eqeq1i 2761 |
. . . . . . . . . 10
⊢ ((∩ 𝑥
∩ 𝑋) = ∩ 𝑥
↔ (𝑋 ∩ ∩ 𝑥) =
∩ 𝑥) |
20 | | eqcom 2763 |
. . . . . . . . . 10
⊢ ((𝑋 ∩ ∩ 𝑥) =
∩ 𝑥 ↔ ∩ 𝑥 = (𝑋 ∩ ∩ 𝑥)) |
21 | 19, 20 | sylbb 209 |
. . . . . . . . 9
⊢ ((∩ 𝑥
∩ 𝑋) = ∩ 𝑥
→ ∩ 𝑥 = (𝑋 ∩ ∩ 𝑥)) |
22 | 17, 21 | sylbi 207 |
. . . . . . . 8
⊢ (∩ 𝑥
⊆ 𝑋 → ∩ 𝑥 =
(𝑋 ∩ ∩ 𝑥)) |
23 | | eleq1 2823 |
. . . . . . . . 9
⊢ (∩ 𝑥 =
(𝑋 ∩ ∩ 𝑥)
→ (∩ 𝑥 ∈ 𝐵 ↔ (𝑋 ∩ ∩ 𝑥) ∈ 𝐵)) |
24 | 23 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝒫 𝑋 → (∩ 𝑥 =
(𝑋 ∩ ∩ 𝑥)
→ (∩ 𝑥 ∈ 𝐵 ↔ (𝑋 ∩ ∩ 𝑥) ∈ 𝐵))) |
25 | 22, 24 | syl5 34 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝒫 𝑋 → (∩ 𝑥
⊆ 𝑋 → (∩ 𝑥
∈ 𝐵 ↔ (𝑋 ∩ ∩ 𝑥)
∈ 𝐵))) |
26 | 16, 25 | syld 47 |
. . . . . 6
⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → (∩ 𝑥
∈ 𝐵 ↔ (𝑋 ∩ ∩ 𝑥)
∈ 𝐵))) |
27 | 26 | ralrimiv 3099 |
. . . . 5
⊢ (𝐴 ⊆ 𝒫 𝑋 → ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(∩ 𝑥
∈ 𝐵 ↔ (𝑋 ∩ ∩ 𝑥)
∈ 𝐵)) |
28 | | ralbi 3202 |
. . . . 5
⊢
(∀𝑥 ∈
(𝒫 𝐴 ∖
{∅})(∩ 𝑥 ∈ 𝐵 ↔ (𝑋 ∩ ∩ 𝑥) ∈ 𝐵) → (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∩ 𝑥
∈ 𝐵 ↔
∀𝑥 ∈ (𝒫
𝐴 ∖ {∅})(𝑋 ∩ ∩ 𝑥)
∈ 𝐵)) |
29 | 27, 28 | syl 17 |
. . . 4
⊢ (𝐴 ⊆ 𝒫 𝑋 → (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∩ 𝑥
∈ 𝐵 ↔
∀𝑥 ∈ (𝒫
𝐴 ∖ {∅})(𝑋 ∩ ∩ 𝑥)
∈ 𝐵)) |
30 | 8, 29 | anbi12d 749 |
. . 3
⊢ (𝐴 ⊆ 𝒫 𝑋 → ((𝑋 ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∩ 𝑥
∈ 𝐵) ↔ ((𝑋 ∩ ∩ ∅) ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 ∩ ∩ 𝑥) ∈ 𝐵))) |
31 | | ancom 465 |
. . 3
⊢ (((𝑋 ∩ ∩ ∅) ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 ∩ ∩ 𝑥) ∈ 𝐵) ↔ (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 ∩ ∩ 𝑥) ∈ 𝐵 ∧ (𝑋 ∩ ∩ ∅)
∈ 𝐵)) |
32 | 30, 31 | syl6bb 276 |
. 2
⊢ (𝐴 ⊆ 𝒫 𝑋 → ((𝑋 ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∩ 𝑥
∈ 𝐵) ↔
(∀𝑥 ∈
(𝒫 𝐴 ∖
{∅})(𝑋 ∩ ∩ 𝑥)
∈ 𝐵 ∧ (𝑋 ∩ ∩ ∅) ∈ 𝐵))) |
33 | | 0elpw 4979 |
. . 3
⊢ ∅
∈ 𝒫 𝐴 |
34 | | inteq 4626 |
. . . . 5
⊢ (𝑥 = ∅ → ∩ 𝑥 =
∩ ∅) |
35 | | ineq2 3947 |
. . . . 5
⊢ (∩ 𝑥 =
∩ ∅ → (𝑋 ∩ ∩ 𝑥) = (𝑋 ∩ ∩
∅)) |
36 | | eleq1 2823 |
. . . . 5
⊢ ((𝑋 ∩ ∩ 𝑥) =
(𝑋 ∩ ∩ ∅) → ((𝑋 ∩ ∩ 𝑥) ∈ 𝐵 ↔ (𝑋 ∩ ∩ ∅)
∈ 𝐵)) |
37 | 34, 35, 36 | 3syl 18 |
. . . 4
⊢ (𝑥 = ∅ → ((𝑋 ∩ ∩ 𝑥)
∈ 𝐵 ↔ (𝑋 ∩ ∩ ∅) ∈ 𝐵)) |
38 | 37 | bj-raldifsn 33356 |
. . 3
⊢ (∅
∈ 𝒫 𝐴 →
(∀𝑥 ∈ 𝒫
𝐴(𝑋 ∩ ∩ 𝑥) ∈ 𝐵 ↔ (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 ∩ ∩ 𝑥) ∈ 𝐵 ∧ (𝑋 ∩ ∩ ∅)
∈ 𝐵))) |
39 | 33, 38 | ax-mp 5 |
. 2
⊢
(∀𝑥 ∈
𝒫 𝐴(𝑋 ∩ ∩ 𝑥)
∈ 𝐵 ↔
(∀𝑥 ∈
(𝒫 𝐴 ∖
{∅})(𝑋 ∩ ∩ 𝑥)
∈ 𝐵 ∧ (𝑋 ∩ ∩ ∅) ∈ 𝐵)) |
40 | 32, 39 | syl6bbr 278 |
1
⊢ (𝐴 ⊆ 𝒫 𝑋 → ((𝑋 ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∩ 𝑥
∈ 𝐵) ↔
∀𝑥 ∈ 𝒫
𝐴(𝑋 ∩ ∩ 𝑥) ∈ 𝐵)) |