MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsres Structured version   Visualization version   GIF version

Theorem bitsres 15417
Description: Restrict the bits of a number to an upper integer set. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsres ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))

Proof of Theorem bitsres
StepHypRef Expression
1 simpl 474 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
2 2nn 11397 . . . . . . . 8 2 ∈ ℕ
32a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℕ)
4 simpr 479 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
53, 4nnexpcld 13244 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
61, 5zmodcld 12905 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℕ0)
76nn0zd 11692 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℤ)
87znegcld 11696 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → -(𝐴 mod (2↑𝑁)) ∈ ℤ)
9 sadadd 15411 . . 3 ((-(𝐴 mod (2↑𝑁)) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)))
108, 1, 9syl2anc 696 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)))
11 sadadd 15411 . . . . . 6 ((-(𝐴 mod (2↑𝑁)) ∈ ℤ ∧ (𝐴 mod (2↑𝑁)) ∈ ℤ) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))))
128, 7, 11syl2anc 696 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))))
138zcnd 11695 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → -(𝐴 mod (2↑𝑁)) ∈ ℂ)
147zcnd 11695 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 mod (2↑𝑁)) ∈ ℂ)
1513, 14addcomd 10450 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁))) = ((𝐴 mod (2↑𝑁)) + -(𝐴 mod (2↑𝑁))))
1614negidd 10594 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 mod (2↑𝑁)) + -(𝐴 mod (2↑𝑁))) = 0)
1715, 16eqtrd 2794 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁))) = 0)
1817fveq2d 6357 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))) = (bits‘0))
19 0bits 15383 . . . . . 6 (bits‘0) = ∅
2018, 19syl6eq 2810 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + (𝐴 mod (2↑𝑁)))) = ∅)
2112, 20eqtrd 2794 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) = ∅)
2221oveq1d 6829 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))))
23 bitsss 15370 . . . . 5 (bits‘-(𝐴 mod (2↑𝑁))) ⊆ ℕ0
24 bitsss 15370 . . . . 5 (bits‘(𝐴 mod (2↑𝑁))) ⊆ ℕ0
25 inss1 3976 . . . . . 6 ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ (bits‘𝐴)
26 bitsss 15370 . . . . . . 7 (bits‘𝐴) ⊆ ℕ0
2726a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
2825, 27syl5ss 3755 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0)
29 sadass 15415 . . . . 5 (((bits‘-(𝐴 mod (2↑𝑁))) ⊆ ℕ0 ∧ (bits‘(𝐴 mod (2↑𝑁))) ⊆ ℕ0 ∧ ((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))))
3023, 24, 28, 29mp3an12i 1577 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))))
31 bitsmod 15380 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(𝐴 mod (2↑𝑁))) = ((bits‘𝐴) ∩ (0..^𝑁)))
3231oveq1d 6829 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))))
33 inss1 3976 . . . . . . . . . 10 ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ (bits‘𝐴)
3433, 27syl5ss 3755 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (0..^𝑁)) ⊆ ℕ0)
35 fzouzdisj 12718 . . . . . . . . . . . 12 ((0..^𝑁) ∩ (ℤ𝑁)) = ∅
3635ineq2i 3954 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ((0..^𝑁) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ ∅)
37 inindi 3973 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ((0..^𝑁) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁)))
38 in0 4111 . . . . . . . . . . 11 ((bits‘𝐴) ∩ ∅) = ∅
3936, 37, 383eqtr3i 2790 . . . . . . . . . 10 (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁))) = ∅
4039a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) ∩ ((bits‘𝐴) ∩ (ℤ𝑁))) = ∅)
4134, 28, 40saddisj 15409 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∪ ((bits‘𝐴) ∩ (ℤ𝑁))))
42 indi 4016 . . . . . . . 8 ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (((bits‘𝐴) ∩ (0..^𝑁)) ∪ ((bits‘𝐴) ∩ (ℤ𝑁)))
4341, 42syl6eqr 2812 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))))
44 nn0uz 11935 . . . . . . . . . 10 0 = (ℤ‘0)
454, 44syl6eleq 2849 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
46 fzouzsplit 12717 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → (ℤ‘0) = ((0..^𝑁) ∪ (ℤ𝑁)))
4745, 46syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (ℤ‘0) = ((0..^𝑁) ∪ (ℤ𝑁)))
4844, 47syl5eq 2806 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ℕ0 = ((0..^𝑁) ∪ (ℤ𝑁)))
4926, 48syl5sseq 3794 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘𝐴) ⊆ ((0..^𝑁) ∪ (ℤ𝑁)))
50 df-ss 3729 . . . . . . . 8 ((bits‘𝐴) ⊆ ((0..^𝑁) ∪ (ℤ𝑁)) ↔ ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (bits‘𝐴))
5149, 50sylib 208 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ ((0..^𝑁) ∪ (ℤ𝑁))) = (bits‘𝐴))
5243, 51eqtrd 2794 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^𝑁)) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (bits‘𝐴))
5332, 52eqtrd 2794 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = (bits‘𝐴))
5453oveq2d 6830 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd ((bits‘(𝐴 mod (2↑𝑁))) sadd ((bits‘𝐴) ∩ (ℤ𝑁)))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)))
5530, 54eqtrd 2794 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘(𝐴 mod (2↑𝑁)))) sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)))
56 sadid2 15413 . . . 4 (((bits‘𝐴) ∩ (ℤ𝑁)) ⊆ ℕ0 → (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ (ℤ𝑁)))
5728, 56syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (∅ sadd ((bits‘𝐴) ∩ (ℤ𝑁))) = ((bits‘𝐴) ∩ (ℤ𝑁)))
5822, 55, 573eqtr3d 2802 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘-(𝐴 mod (2↑𝑁))) sadd (bits‘𝐴)) = ((bits‘𝐴) ∩ (ℤ𝑁)))
591zcnd 11695 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
6013, 59addcomd 10450 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + 𝐴) = (𝐴 + -(𝐴 mod (2↑𝑁))))
6159, 14negsubd 10610 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 + -(𝐴 mod (2↑𝑁))) = (𝐴 − (𝐴 mod (2↑𝑁))))
6259, 14subcld 10604 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 − (𝐴 mod (2↑𝑁))) ∈ ℂ)
635nncnd 11248 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
645nnne0d 11277 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
6562, 63, 64divcan1d 11014 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) · (2↑𝑁)) = (𝐴 − (𝐴 mod (2↑𝑁))))
661zred 11694 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
675nnrpd 12083 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ+)
68 moddiffl 12895 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) = (⌊‘(𝐴 / (2↑𝑁))))
6966, 67, 68syl2anc 696 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) = (⌊‘(𝐴 / (2↑𝑁))))
7069oveq1d 6829 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − (𝐴 mod (2↑𝑁))) / (2↑𝑁)) · (2↑𝑁)) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7161, 65, 703eqtr2d 2800 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 + -(𝐴 mod (2↑𝑁))) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7260, 71eqtrd 2794 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-(𝐴 mod (2↑𝑁)) + 𝐴) = ((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))
7372fveq2d 6357 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (bits‘(-(𝐴 mod (2↑𝑁)) + 𝐴)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
7410, 58, 733eqtr3d 2802 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  cun 3713  cin 3714  wss 3715  c0 4058  cfv 6049  (class class class)co 6814  cr 10147  0cc0 10148   + caddc 10151   · cmul 10153  cmin 10478  -cneg 10479   / cdiv 10896  cn 11232  2c2 11282  0cn0 11504  cz 11589  cuz 11899  +crp 12045  ..^cfzo 12679  cfl 12805   mod cmo 12882  cexp 13074  bitscbits 15363   sadd csad 15364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1614  df-tru 1635  df-fal 1638  df-had 1682  df-cad 1695  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-sum 14636  df-dvds 15203  df-bits 15366  df-sad 15395
This theorem is referenced by:  bitsuz  15418
  Copyright terms: Public domain W3C validator