MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsp1o Structured version   Visualization version   GIF version

Theorem bitsp1o 15363
Description: The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsp1o ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁)))

Proof of Theorem bitsp1o
StepHypRef Expression
1 2z 11611 . . . . . 6 2 ∈ ℤ
21a1i 11 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℤ)
3 id 22 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
42, 3zmulcld 11690 . . . 4 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
54peano2zd 11687 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
6 bitsp1 15361 . . 3 ((((2 · 𝑁) + 1) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2)))))
75, 6sylan 569 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2)))))
8 2re 11292 . . . . . . . . . . . 12 2 ∈ ℝ
98a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 2 ∈ ℝ)
10 zre 11583 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
119, 10remulcld 10272 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℝ)
1211recnd 10270 . . . . . . . . 9 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
13 1cnd 10258 . . . . . . . . 9 (𝑁 ∈ ℤ → 1 ∈ ℂ)
14 2cnd 11295 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ∈ ℂ)
15 2ne0 11315 . . . . . . . . . 10 2 ≠ 0
1615a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 2 ≠ 0)
1712, 13, 14, 16divdird 11041 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2)))
18 zcn 11584 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1918, 14, 16divcan3d 11008 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁)
2019oveq1d 6808 . . . . . . . 8 (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2)))
2117, 20eqtrd 2805 . . . . . . 7 (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2)))
2221fveq2d 6336 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = (⌊‘(𝑁 + (1 / 2))))
23 0re 10242 . . . . . . . . 9 0 ∈ ℝ
24 halfre 11448 . . . . . . . . 9 (1 / 2) ∈ ℝ
25 halfgt0 11450 . . . . . . . . 9 0 < (1 / 2)
2623, 24, 25ltleii 10362 . . . . . . . 8 0 ≤ (1 / 2)
27 halflt1 11452 . . . . . . . 8 (1 / 2) < 1
2826, 27pm3.2i 447 . . . . . . 7 (0 ≤ (1 / 2) ∧ (1 / 2) < 1)
29 flbi2 12826 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
3024, 29mpan2 671 . . . . . . 7 (𝑁 ∈ ℤ → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
3128, 30mpbiri 248 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(𝑁 + (1 / 2))) = 𝑁)
3222, 31eqtrd 2805 . . . . 5 (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁)
3332adantr 466 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁)
3433fveq2d 6336 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) = (bits‘𝑁))
3534eleq2d 2836 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) ↔ 𝑀 ∈ (bits‘𝑁)))
367, 35bitrd 268 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  cfv 6031  (class class class)co 6793  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277   / cdiv 10886  2c2 11272  0cn0 11494  cz 11579  cfl 12799  bitscbits 15349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-fl 12801  df-seq 13009  df-exp 13068  df-bits 15352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator