MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsinv1 Structured version   Visualization version   GIF version

Theorem bitsinv1 15211
Description: There is an explicit inverse to the bits function for nonnegative integers (which can be extended to negative integers using bitscmp 15207), part 1. (Contributed by Mario Carneiro, 7-Sep-2016.)
Assertion
Ref Expression
bitsinv1 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛) = 𝑁)
Distinct variable group:   𝑛,𝑁

Proof of Theorem bitsinv1
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6698 . . . . . . . . . . 11 (𝑥 = 0 → (0..^𝑥) = (0..^0))
2 fzo0 12531 . . . . . . . . . . 11 (0..^0) = ∅
31, 2syl6eq 2701 . . . . . . . . . 10 (𝑥 = 0 → (0..^𝑥) = ∅)
43ineq2d 3847 . . . . . . . . 9 (𝑥 = 0 → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ ∅))
5 in0 4001 . . . . . . . . 9 ((bits‘𝑁) ∩ ∅) = ∅
64, 5syl6eq 2701 . . . . . . . 8 (𝑥 = 0 → ((bits‘𝑁) ∩ (0..^𝑥)) = ∅)
76sumeq1d 14475 . . . . . . 7 (𝑥 = 0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ∅ (2↑𝑛))
8 sum0 14496 . . . . . . 7 Σ𝑛 ∈ ∅ (2↑𝑛) = 0
97, 8syl6eq 2701 . . . . . 6 (𝑥 = 0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = 0)
10 oveq2 6698 . . . . . . . 8 (𝑥 = 0 → (2↑𝑥) = (2↑0))
11 2cn 11129 . . . . . . . . 9 2 ∈ ℂ
12 exp0 12904 . . . . . . . . 9 (2 ∈ ℂ → (2↑0) = 1)
1311, 12ax-mp 5 . . . . . . . 8 (2↑0) = 1
1410, 13syl6eq 2701 . . . . . . 7 (𝑥 = 0 → (2↑𝑥) = 1)
1514oveq2d 6706 . . . . . 6 (𝑥 = 0 → (𝑁 mod (2↑𝑥)) = (𝑁 mod 1))
169, 15eqeq12d 2666 . . . . 5 (𝑥 = 0 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ 0 = (𝑁 mod 1)))
1716imbi2d 329 . . . 4 (𝑥 = 0 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → 0 = (𝑁 mod 1))))
18 oveq2 6698 . . . . . . . 8 (𝑥 = 𝑘 → (0..^𝑥) = (0..^𝑘))
1918ineq2d 3847 . . . . . . 7 (𝑥 = 𝑘 → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ (0..^𝑘)))
2019sumeq1d 14475 . . . . . 6 (𝑥 = 𝑘 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛))
21 oveq2 6698 . . . . . . 7 (𝑥 = 𝑘 → (2↑𝑥) = (2↑𝑘))
2221oveq2d 6706 . . . . . 6 (𝑥 = 𝑘 → (𝑁 mod (2↑𝑥)) = (𝑁 mod (2↑𝑘)))
2320, 22eqeq12d 2666 . . . . 5 (𝑥 = 𝑘 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘))))
2423imbi2d 329 . . . 4 (𝑥 = 𝑘 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)))))
25 oveq2 6698 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (0..^𝑥) = (0..^(𝑘 + 1)))
2625ineq2d 3847 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ (0..^(𝑘 + 1))))
2726sumeq1d 14475 . . . . . 6 (𝑥 = (𝑘 + 1) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛))
28 oveq2 6698 . . . . . . 7 (𝑥 = (𝑘 + 1) → (2↑𝑥) = (2↑(𝑘 + 1)))
2928oveq2d 6706 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝑁 mod (2↑𝑥)) = (𝑁 mod (2↑(𝑘 + 1))))
3027, 29eqeq12d 2666 . . . . 5 (𝑥 = (𝑘 + 1) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1)))))
3130imbi2d 329 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))))))
32 oveq2 6698 . . . . . . . 8 (𝑥 = 𝑁 → (0..^𝑥) = (0..^𝑁))
3332ineq2d 3847 . . . . . . 7 (𝑥 = 𝑁 → ((bits‘𝑁) ∩ (0..^𝑥)) = ((bits‘𝑁) ∩ (0..^𝑁)))
3433sumeq1d 14475 . . . . . 6 (𝑥 = 𝑁 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛))
35 oveq2 6698 . . . . . . 7 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
3635oveq2d 6706 . . . . . 6 (𝑥 = 𝑁 → (𝑁 mod (2↑𝑥)) = (𝑁 mod (2↑𝑁)))
3734, 36eqeq12d 2666 . . . . 5 (𝑥 = 𝑁 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥)) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁))))
3837imbi2d 329 . . . 4 (𝑥 = 𝑁 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑥))(2↑𝑛) = (𝑁 mod (2↑𝑥))) ↔ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁)))))
39 nn0z 11438 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
40 zmod10 12726 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 mod 1) = 0)
4139, 40syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 mod 1) = 0)
4241eqcomd 2657 . . . 4 (𝑁 ∈ ℕ0 → 0 = (𝑁 mod 1))
43 oveq1 6697 . . . . . . 7 𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)) = ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)))
44 fzonel 12522 . . . . . . . . . . . . 13 ¬ 𝑘 ∈ (0..^𝑘)
4544a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ¬ 𝑘 ∈ (0..^𝑘))
46 disjsn 4278 . . . . . . . . . . . 12 (((0..^𝑘) ∩ {𝑘}) = ∅ ↔ ¬ 𝑘 ∈ (0..^𝑘))
4745, 46sylibr 224 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((0..^𝑘) ∩ {𝑘}) = ∅)
4847ineq2d 3847 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ ((0..^𝑘) ∩ {𝑘})) = ((bits‘𝑁) ∩ ∅))
49 inindi 3863 . . . . . . . . . 10 ((bits‘𝑁) ∩ ((0..^𝑘) ∩ {𝑘})) = (((bits‘𝑁) ∩ (0..^𝑘)) ∩ ((bits‘𝑁) ∩ {𝑘}))
5048, 49, 53eqtr3g 2708 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((bits‘𝑁) ∩ (0..^𝑘)) ∩ ((bits‘𝑁) ∩ {𝑘})) = ∅)
51 simpr 476 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
52 nn0uz 11760 . . . . . . . . . . . . 13 0 = (ℤ‘0)
5351, 52syl6eleq 2740 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
54 fzosplitsn 12616 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘0) → (0..^(𝑘 + 1)) = ((0..^𝑘) ∪ {𝑘}))
5553, 54syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (0..^(𝑘 + 1)) = ((0..^𝑘) ∪ {𝑘}))
5655ineq2d 3847 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) = ((bits‘𝑁) ∩ ((0..^𝑘) ∪ {𝑘})))
57 indi 3906 . . . . . . . . . 10 ((bits‘𝑁) ∩ ((0..^𝑘) ∪ {𝑘})) = (((bits‘𝑁) ∩ (0..^𝑘)) ∪ ((bits‘𝑁) ∩ {𝑘}))
5856, 57syl6eq 2701 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) = (((bits‘𝑁) ∩ (0..^𝑘)) ∪ ((bits‘𝑁) ∩ {𝑘})))
59 fzofi 12813 . . . . . . . . . . 11 (0..^(𝑘 + 1)) ∈ Fin
60 inss2 3867 . . . . . . . . . . 11 ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ⊆ (0..^(𝑘 + 1))
61 ssfi 8221 . . . . . . . . . . 11 (((0..^(𝑘 + 1)) ∈ Fin ∧ ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ⊆ (0..^(𝑘 + 1))) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ∈ Fin)
6259, 60, 61mp2an 708 . . . . . . . . . 10 ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ∈ Fin
6362a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((bits‘𝑁) ∩ (0..^(𝑘 + 1))) ∈ Fin)
64 2nn 11223 . . . . . . . . . . . 12 2 ∈ ℕ
6564a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 2 ∈ ℕ)
66 simpr 476 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1))))
6766elin2d 3836 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ (0..^(𝑘 + 1)))
68 elfzouz 12513 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^(𝑘 + 1)) → 𝑛 ∈ (ℤ‘0))
6967, 68syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ (ℤ‘0))
7069, 52syl6eleqr 2741 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → 𝑛 ∈ ℕ0)
7165, 70nnexpcld 13070 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → (2↑𝑛) ∈ ℕ)
7271nncnd 11074 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))) → (2↑𝑛) ∈ ℂ)
7350, 58, 63, 72fsumsplit 14515 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)))
74 bitsinv1lem 15210 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑁 mod (2↑(𝑘 + 1))) = ((𝑁 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
7539, 74sylan 487 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 mod (2↑(𝑘 + 1))) = ((𝑁 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
76 eqeq2 2662 . . . . . . . . . . 11 ((2↑𝑘) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = (2↑𝑘) ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
77 eqeq2 2662 . . . . . . . . . . 11 (0 = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = 0 ↔ Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
78 simpr 476 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → 𝑘 ∈ (bits‘𝑁))
7978snssd 4372 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → {𝑘} ⊆ (bits‘𝑁))
80 sseqin2 3850 . . . . . . . . . . . . . 14 ({𝑘} ⊆ (bits‘𝑁) ↔ ((bits‘𝑁) ∩ {𝑘}) = {𝑘})
8179, 80sylib 208 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → ((bits‘𝑁) ∩ {𝑘}) = {𝑘})
8281sumeq1d 14475 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = Σ𝑛 ∈ {𝑘} (2↑𝑛))
83 simplr 807 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → 𝑘 ∈ ℕ0)
8464a1i 11 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → 2 ∈ ℕ)
8584, 83nnexpcld 13070 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → (2↑𝑘) ∈ ℕ)
8685nncnd 11074 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → (2↑𝑘) ∈ ℂ)
87 oveq2 6698 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
8887sumsn 14519 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (2↑𝑘) ∈ ℂ) → Σ𝑛 ∈ {𝑘} (2↑𝑛) = (2↑𝑘))
8983, 86, 88syl2anc 694 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ {𝑘} (2↑𝑛) = (2↑𝑘))
9082, 89eqtrd 2685 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = (2↑𝑘))
91 simpr 476 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → ¬ 𝑘 ∈ (bits‘𝑁))
92 disjsn 4278 . . . . . . . . . . . . . 14 (((bits‘𝑁) ∩ {𝑘}) = ∅ ↔ ¬ 𝑘 ∈ (bits‘𝑁))
9391, 92sylibr 224 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → ((bits‘𝑁) ∩ {𝑘}) = ∅)
9493sumeq1d 14475 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = Σ𝑛 ∈ ∅ (2↑𝑛))
9594, 8syl6eq 2701 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (bits‘𝑁)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = 0)
9676, 77, 90, 95ifbothda 4156 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛) = if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0))
9796oveq2d 6706 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)) = ((𝑁 mod (2↑𝑘)) + if(𝑘 ∈ (bits‘𝑁), (2↑𝑘), 0)))
9875, 97eqtr4d 2688 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 mod (2↑(𝑘 + 1))) = ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)))
9973, 98eqeq12d 2666 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))) ↔ (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛)) = ((𝑁 mod (2↑𝑘)) + Σ𝑛 ∈ ((bits‘𝑁) ∩ {𝑘})(2↑𝑛))))
10043, 99syl5ibr 236 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1)))))
101100expcom 450 . . . . 5 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘)) → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))))))
102101a2d 29 . . . 4 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑘))(2↑𝑛) = (𝑁 mod (2↑𝑘))) → (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^(𝑘 + 1)))(2↑𝑛) = (𝑁 mod (2↑(𝑘 + 1))))))
10317, 24, 31, 38, 42, 102nn0ind 11510 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁))))
104103pm2.43i 52 . 2 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = (𝑁 mod (2↑𝑁)))
105 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
106105, 52syl6eleq 2740 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
10764a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℕ)
108107, 105nnexpcld 13070 . . . . . . 7 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ)
109108nnzd 11519 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ)
110 2z 11447 . . . . . . . 8 2 ∈ ℤ
111 uzid 11740 . . . . . . . 8 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
112110, 111ax-mp 5 . . . . . . 7 2 ∈ (ℤ‘2)
113 bernneq3 13032 . . . . . . 7 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (2↑𝑁))
114112, 113mpan 706 . . . . . 6 (𝑁 ∈ ℕ0𝑁 < (2↑𝑁))
115 elfzo2 12512 . . . . . 6 (𝑁 ∈ (0..^(2↑𝑁)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (2↑𝑁) ∈ ℤ ∧ 𝑁 < (2↑𝑁)))
116106, 109, 114, 115syl3anbrc 1265 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(2↑𝑁)))
117 bitsfzo 15204 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑁)) ↔ (bits‘𝑁) ⊆ (0..^𝑁)))
11839, 105, 117syl2anc 694 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∈ (0..^(2↑𝑁)) ↔ (bits‘𝑁) ⊆ (0..^𝑁)))
119116, 118mpbid 222 . . . 4 (𝑁 ∈ ℕ0 → (bits‘𝑁) ⊆ (0..^𝑁))
120 df-ss 3621 . . . 4 ((bits‘𝑁) ⊆ (0..^𝑁) ↔ ((bits‘𝑁) ∩ (0..^𝑁)) = (bits‘𝑁))
121119, 120sylib 208 . . 3 (𝑁 ∈ ℕ0 → ((bits‘𝑁) ∩ (0..^𝑁)) = (bits‘𝑁))
122121sumeq1d 14475 . 2 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ ((bits‘𝑁) ∩ (0..^𝑁))(2↑𝑛) = Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛))
123 nn0re 11339 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
124 2rp 11875 . . . . 5 2 ∈ ℝ+
125124a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 2 ∈ ℝ+)
126125, 39rpexpcld 13072 . . 3 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ+)
127 nn0ge0 11356 . . 3 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
128 modid 12735 . . 3 (((𝑁 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ 𝑁𝑁 < (2↑𝑁))) → (𝑁 mod (2↑𝑁)) = 𝑁)
129123, 126, 127, 114, 128syl22anc 1367 . 2 (𝑁 ∈ ℕ0 → (𝑁 mod (2↑𝑁)) = 𝑁)
130104, 122, 1293eqtr3d 2693 1 (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  cun 3605  cin 3606  wss 3607  c0 3948  ifcif 4119  {csn 4210   class class class wbr 4685  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725  +crp 11870  ..^cfzo 12504   mod cmo 12708  cexp 12900  Σcsu 14460  bitscbits 15188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028  df-bits 15191
This theorem is referenced by:  bitsinv2  15212  bitsf1ocnv  15213  eulerpartlemgc  30552  eulerpartlemgs2  30570
  Copyright terms: Public domain W3C validator