![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biorfi | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) |
Ref | Expression |
---|---|
biorfi.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
biorfi | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 399 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
2 | biorfi.1 | . . 3 ⊢ ¬ 𝜑 | |
3 | orel2 397 | . . 3 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜓) |
5 | 1, 4 | impbii 199 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 |
This theorem is referenced by: pm4.43 1006 dn1 1046 indifdir 4026 un0 4110 opthprc 5324 imadif 6134 xrsupss 12352 mdegleb 24043 difrab2 29667 ind1a 30411 poimirlem30 33770 ifpdfan2 38327 ifpdfan 38330 ifpnot 38334 ifpid2 38335 uneqsn 38841 |
Copyright terms: Public domain | W3C validator |